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1. INTRODUCTION

In many branches of sciences, economics, computer science, engineering and the
development of non- linear analysis, the fixed point theory is one of the most important tool.
In 1989, Bakhtin [4] introduced the concept of b- metric space and established many results
and others (see [1],[2], [3], [5], [14]& [15]). In 2017, Kamran [10] introduced the concept of
extended b- metric space and established many results and others (see [17], [18]).

On the other hand in 1963, Géhler[8] introduced the concept of 2-metric having the area
of triangle of Ras the imperative example. Similarly, several fixed point results were
obtained for mapping in such space and many other authors (see [7], [9],[12], [15]&[16] ). In
2014, Parvaneh al et. [14]introducedb, - metric space and established many fixed point
results and many other authors ( see [5]&[10] ).

In this paper,obtain fixed point results for single and multi-valued mappings in the
structure of extended b - metric space. Our results extend the results of Kiran et al. [11] and
others. Moreover, an example is given at the end to show the superiority of our results.

2. PRELIMINARIES

Definition 2.1 [ 6] Let X be a set and s >1 a real number. A function d : X x X
—[ 0, o) is called a b - metric space, if it satisfied the following axioms for all x,y,
zeX,
1. d(x,y)=0ifandonlyif x =y,
2.d(x,y) =d(y, x),
3.dx,y) <s[dx,z)+ d(zy)]
Then pair ( X, d) is called a b - metric space with parameter s.
Example 2.2[ 6 ] Let ( X, d ) be a metric space and let p> 1, A > 0 and p > 0 for x, ye X.
Set
p(x,y)=rd(x,y)+pd(x y)P. Then (X, p)is ab - metric space with the parameter s
= 2% and not a metric space on X.
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Definition 2.3 [ 10 JLet X be anon- empty setand ¢ : X x X —[ 1, ). A function
dp : X x X —[0, ) is called an extended b - metric space, if for all x, y, z ¢ X, it
satisfies.

1. do(x,y)=0ifandonlyifx=y,2.dy (X, ¥) =do (y,X),3.dpo (X, ¥) <0 (X, y) [de
(x, Z ) + do (z, y ) ]
The pair ( X, dy) is called an extended b — metric space.

Example2.4 [10]Let X =[ 0, ). Define d, : X x X —[0, o) by

0,ifx=y,
3,ifxorye{l,2},x#Yy,
do(X, ¥) = 5 ifx#ye{1,2},

1, otherwise.

Then (X, dy) is an extended b - metric space, where ¢ : X x X —J[ 1, wo)is defined
byo(x,y)=x+y+1forallx,yeX.

Remark 2.5 [ 10] Every b - metric space is an extended b - metric space with constant
function ¢ (x, y ) =s if s > 1 but its converse is not true in general.

Lemma 2.6 [ 11 ] Every sequence {Xn}n ¢ ~ If elements from an extended b - metric
space (X, dy ) having the property that for every n € N, there exists p € [0,1 ) such that

d@( Xn+1, Xn ) S U dcp (Xn, Xn-1 )1

where for each Xo & X, limnm —o® (Xn, Xm ) < 1/W. Then {Xn}*n=0 is a Cauchy sequence.

Lemma 2.7 [ 11 ] Every sequence {Xn}n ¢ nif elements from an extended b - metric
space (X, dy ), the inequality

do( X0, Xk ) < Xig dep (xi xi + 1) [li=o (X1, X} ) is valid for every k € N.

Definition 2.8 [10] Let X be a non-empty set and let function d : X x X xX— [
0,00) be a mapping satisfying

1. For every pair of distinct points x, y € X, three exists a point z ¢ X such that d ( X, Y,
z) #0 2. If at least two of three points X, y, z are the same, then d ( x, v,
2)=0 3.d(xy,z)=d(x,
z,y)=d(y,x,z)=d(y,z,x) =d(z,x,y)=d(z vy, x)forallx,y,zeX4. d(x,y,2)
<d(Xzt)+d(xtz)+ d(tyz)forall x,y,zteX.

Then d is called a 2 — metricon X and ( X, d) is called a 2 — metric space.

Definition 2.9 [14] Let X be a non- empty set X. s > 1 be a number and let function
d : X x X xX—[0,00) be a mapping satisfying the following conditions.

1. For every pair of distinct points X, y € X, three exists a point z € X such that d ( x, y,
z ) # 02. If at least two of three points x, y, z are the same, the d ( x, y, Z ) = 0,
3.d(x,y,z2)=d(x,z,y)=d(y,x,z)=d(y,z,x) =d(z,x,y)=d(zVY,x)forall
X,y,zeX, 4 dX,y,z) <s [d(x,z,t)+ d(x,t,z)++ d(t,y,z)] forall x,y,z, teX.

Then (X, d) is called a b2 - metric space with parameter s.

Remark 2.10 for s = 1, b2 - metric space reduces to 2 — metric space.

Example 2.11 [14] Let X =10, o). Define the functiond : X x X x X —[ 0, o) by
d(X,¥,2) =(xy+yz+zx)P if x# y#z #x, and otherwise d (x,y,z)=0, where p>1lisa
real number. Evidently, from convexity of function f(x) = xP for x > 0, then by Jensen
inequality we have

(a+b+c)’< 3P @ +bP+cP)

So, one can obtain the result that ( X, d) is a bz - metric space with s < 3%,

Definition 2.12Let X be a non- empty set and ¢ : X xXx X—[ 1, ©) . A function d,

X xX x X—[ 0, o) is called an extended b2 - metric space, if for all x, y, z, t € X, it
satisfies.
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1. For every pair of distinct points x, y € X, three exists a point z € X such that
do(X,y,2) #0,

2. If at least two of three points X, y, z are the same, the do( X, Yy, z) =0,

3' dq;(X,y,Z): d<P(X’Zvy): d(P(y’X!Z): d<P(y’Z’X) :d<P(Z’X1y): d(P
(z,y,x)forallx,y,zeX,

4.do (X, v,2) S0 (X,y,2) [dp (X,2,t)+ do (X, t,2) + do (L, y,z)] forall x,y,
z,teX. Then (X, d, ) is called an extended b, - metric space.

Example 2.13 Let X={(a,0):a=1/2,1/2% ...,1/2", ...} U {0, 1} CR®and letd,
(x, y, z ) denote the sequenceof the area of triangle with vertex x, y, z ¢ X.
do ( (0, 0),(B, 0),(0,1) ) =(oa—PB )4, d((a, 0),(p,0),0,1))=0a+p +1. Then X is an
extendedb; - metric space.

Remark 2.14 Every b, — metric space is an extended b, — metric space with constant
function ¢ (X, y, z ) = s if s> 1, but its converse is not true in general.

Definition 2.15[1] Let ( X, dg ) be an extended b2 — metric space, wherep : X xXx
X—[ 1, ) is bounded. Then for all A, B, C &C B(X) denotes the family of all non-empty
closed and bounded subset of X, the Hausdorff- Pompieu metric on C B(X) induced by dy is
defined by

He (A, B, C) =max { sup.eady(a, B, C), supperde( b, C, A),supc:cdy(c, A, B)}

Where for every ae A

de(a, B,C) = inf{dgp(a,b,c):beB,ceC } and

¢ :C B(X)x C B(X) xC B(X) — [1, o) is such that ¢ (A,B,C)=sup {d(a,b,c);a
eA,beB, ceC}.

Definition 2.16[11] Let X be any set. A function T : X— C B(X) be a multi- valued
map. For any point Xo € X, the sequence {xn}n=0given by Xn+1 € Txn,n =0, 1, 2, ... is called
an iterative sequence with initial point Xo.

Definition 2.17[11] Let (X, dg ) be an extended b — metric space. A function T : X—
C B(X) is called continuous , if for every sequence {Xn}nen and {yn}nen belongs to X and x, y
€ X such that

liMnooXn =X, liMaswyn =y and yn € Txn. We have y € Tx.

Definition 2.18[11] An extended b — metric space(X, d¢ ) is called x - continuous, it
for every A ¢ C B(X),

{n}nene X and xe X such that lima—aoXn = X. We have  limn—odg( Xn, A) = do( X,
A).

Remark 2.19 [8] Note that x - continuous of dg is stronger than continuity of dg in
first variable.

In [ 11 1], the author introduced the following results, which improve the results of [ 20],
[23]

.Theorem 2.20 [ 11]Let ( X, d, ) be a complete extended b — metric space with ¢ :
Xx X—[ 1, ).

If T:X — X satisfies the inequality

do (Tx, Ty)<kdy (X, y) +kady (X, TX) + ksdo (y, Ty) +ka[dy (y, TX) +do (x, Ty)

where ki>0, for I =1, 2, 3, 4 and for each xoe X,
kit ko +k3 +2Kalimym—oo (Xn, Xm ) < 1, then T has a fixed point.

In [ 11 ], the author introduced the following results, which improve the results of [ 20],
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Theorem 2.21 [ 11]Let ( X, dy ) be a complete extended b — metric space with ¢ : Xx
X—[ 1, o).

If T:X — X satisfies the inequality

do (Tx, Ty )<kide (X,y) +kody (X, TX) + do (y, Ty)], for each x, y € X, where ki, ko
€ [0, 1/3), Moreover for each xoe X,

Kolimym—o® (xn, Xm ) <1, then T has a unique fixed point.

Theorem 2.22 [ 11]Let ( X, dy ) be a complete extended b — metric space. LetT : X— C
B(X) be a multi- valued mapping having the property that there exists ci, c2e [0,1] and mg[
0,1] such that

(i) For each xoe X, limpm—et c2¢ (Xn, Xm ) < 1, here Xn = T"Xo,

(i) Hp( Tx, Ty ) <n Ney ¢, (x, y ) forall x, y e X.

Then for every xoe X, there exists pe [0,1] and a sequence {xn}nen Of iterates from X
such that for every n e N, dp (Xn, Xn+1) < pdg (Xn-
1, Xn)-

Theorem 2.23 [ 11]Let ( X, dy ) be a complete extended b — metric space. LetT : X— C
B(X) be a multi- valued mapping having the property that there exists ci, c2€ [0,1] and ne [
0,1] such that

(i) For each xoe X, limnm—wn c2 (Xn, Xm ) < 1, here Xn = T"Xo,

(i) Hp( Tx, Ty ) <n Neyc, (%, y ) forall x,y e X.

(iii) T is continuous.

Then T has a fixed point in X.

Theorem 2.24 [ 11]Let ( X, dy ) be a complete extended b2 - metric space. LetT : X—
C B(X) be a multi- valued mapping having the property that there exists c1, c2¢ [0,1] and ne
[ 0,1] such that

(i) For each xoe X, limnm—wn c2 (Xn, Xm ) < 1, here Xn = T"Xo,

(if) Hp( Tx, Ty ) <n Neyc, (X, y) forall x, y e X.

(iii) T is x - continuous.

Then T has a fixed point in X.

Theorem 2.25[ 11] A multi — valued mapping T :X— C B(X) has a fixed point in a
complete extended b, — metric space ( X, d, ) if it satisfies the following two axioms

(i) There exists c1, c2e [0,1] and me [ 0,1] such that Hg ( Tx, Ty ) <n Ne, ¢, (X, y ) for
all x,yeX,

(i) For each xoe X, max { n c1liMym—o® (Xn, Xm ), N c2liMpm—od (Xn, Xm ) } < 1, here
Xn = T"Xo.

3. MAIN RESULTS

Definition 3.1 Let (X, d¢ ) be an extended b2 — metric space. A function T : X— C
B(X) is called continuous , if for every sequence {Xn}nen and {yn}nen belongs to X and x, y €
X such that

liMp—oXn =X, liMa—xyn =y and yn € Txn. We have y e Tx.

Definition 3.2An extended b, — metric space(X, dy ) is called x - continuous, it for
every A, Be C B(X),

{Xn}nene X and xe X such that limy—.Xn = X. We have  limy—.0gp( Xn, A, B) = dg(
X, A, B).
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Lemma 3.3 de( Xn, Xn-1, Xn+1 ) =0.

Lemma 3.4 Every sequence {Xn}n ¢ ~ If elements from an extended b, — metric space
(X, dy ), the inequality

do( Xo, Xk, @) < Y4 dc])(xi» xi +1,a) [1i2o ®( xJ, ), @ ) is valid for every k € N.

Proof- dy ( Xo, Xk, a) < ¢ (X0, Xk, @) [de ( X0, Xk, X1 ) +d¢ ( Xo, X1, @) +d¢ ( X1, Xk, @) ].
Then by lemma 3.3,

do ( Xo, Xk, )< @ (X0, Xk, @) o ( Xo, X1, @) +@ (X0, Xk, @ ) @ (X1, Xk, @) Ao ( X1, X2, 2) +

.t
¢ (X0, Xk, @) @ (X1, Xk, @ )... @ (Xk-1, Xk, @) o ( Xk-1, Xk,

a).

This implies that dy( Xo, Xk, a) < YK} dp(xXi X + 1,) [Too d(xp Xk, a).

Lemma 3.5 Every sequence {Xn}nen If elements from an extended b, — metric space (X,
de ) , having the property that for every n € N, there exists p € [0,1 ) such that

do( Xn+1, Xn, @ ) < p do ( Xn, Xn-1, @ ). Then {xn} is a Cauchy sequence. ..................
3.1

Proof- First by successively applying 3.1, we get
do( Xn+1, Xn, @) S pudp (X1, X0, @) wevininiiniiieieeeeeee 3.2
for every n € N. Then by the lemma3.4, for all m. k € N, we have
do( Xm, Xmek, @) < ZphE=! dp(en xn + 1, @) [1izo ®(xp, xm L koa)
< dgy(x0, ¥1, @) Zn=o W [0 ®Cxp, ¥ | ko @)
<dg(xpx1, @) Lo u " M LT d(xpxm 4 kb @)
< u"dg(x0,x1, @) TiZo W TS O(xp,m 4 ko @)
< uMdgy(x0, x1, @) TnZg WO T dCxp x¥m 4 o @) 4. oo 3.3
Now let us take two case for
loguI 720" d(xp, xm +k a) +n.
Case I. If [TZg" d(x], xm Lkoa ) is finite, let us say M, then limy—. loguM+n = 0.
Hence the series X1 uloguM+nis convergent.
Case Il If [IZ5" d(xp, xm  k.a) is infinite, then  limalogu[[;Z5" d(x, xm
k»a) =0, so there exist No € N such that P b (x), X, +la)>M, ie
W™ b (xp, X Lhoa)t n<pMu", for each n & N, n > no.

Hence the series X1 ulogul‘[?jomq)( XLXm 4 ko a) +n is convergent. If both
cases denoting by

S the sum of this series. We come to the conclusion that

do( Xm, Xm+1, @ ) < u™dg ( X1, Xo, @ )s, for all m, k € N.

Consequently, as  lim,—u™ = 0, we conclude that {Xm}meN is a Cauchy sequence.

Lemma 3.6 Let A, B, C ¢ CB(X), then for every p >0 and b ¢ B, ¢ &€ C there exists a
€ A such that

do(a,b,¢)< Ho( A B, C)+ e coveieeiieeieeaeen. 3.4

Proof-By definition of Hausdorff 2- metric, for A, B, C ¢ CB(X) and for be B, c € C,
we have

do(a,b,c)< Ho(A, B,C).

By the definition of infimum, we can let { an} be a sequence in A such that

do(b,an,c)< He(b,a,C)+p, where p>0. ......oooevvnn.... 3.5

We know that A is closed and bounded, so there exists a € A such that an — a.

2588



International Journal of Aquatic Science I]ﬂs
ISSN: 2008-8019

Vol 12, Issue 03, 2021

Therefore, by 3.5, we have dg(a,b,c)< do(A,b,c)+pu < Ho(A,B,C)+ L.

Theorem 3.7 Let ( X, do ) be a complete extended bz — metric space with ¢ : X xXx
X—[ 1, o).

If T:X — X satisfies the inequality

do (Tx, Ty, a)<kide (X, y,a) +Kade (X, TX,a) + Kkade (y,Ty,a) + ks [dy (y, TX, Q)
+de (X, Ty,a),....3.6

where ki>0, for I =1, 2, 3, 4 and for each xoe X,

kit k2 +k3 +2Kalimy m— (Xn, Xm, @ ) < 1, then T has a unique fixed point.

Proof-Let us choose an arbitrary Xo € X and define the iterative sequence {Xn}n=0" by
Xn = T"Xo for all n > 1.
If Xn = Xn-1, then X, is a fixed point of T the proof holds. So suppose Xn # xn-1 for all n >
1. Then from equation 3.6, we have
do (TXn, T Xn-1, @ )< k1de (Xn, Xn-1, @ )+Kade(Xn, TXn, @ )+ksdy (Xn-1, TXn-1, @ )+ Ka [ de (Xn,
Xn, a )+dq; (Xn-l, Xn+1,a)]
= kidy (Xn, Xn-1, @ )+Kade(Xn, Xn+1, @ )+Kade (Xn-1, Xn, @ )+ Ka [ do (Xn,
Xn, d )+dq; (Xn-l, Xn+1,a)].
By triangle inequality, we have
dq) (TXn, T Xn-1, @ )Skld(p (Xn, Xn-1, @ )+k2d(p(Xn, Xn+1, @ )+k3d(p (Xn-l, Xn, d )+ kA(P (Xn-]_, Xn+1,
a) [de (Xn-1, Xn+1, Xn )+ de (Xn-1, Xn,@)+dy (Xn, Xn+1,a)]
= k1dg (Xn, Xn-1, @ )+Ko0e(Xn, Xn+1, @ )+kady (Xn-1, Xn, @ )+ Ka@ (Xn-1, Xn+1, @) [ do (Xn-1, Xn
+1,8) + dp (Xn-1, Xn+1,a)], by lemma 3.3
=[ k1 + ka+ Ka (Xn-1, Xn+1, @ )] do (Xn-1, Xn+1,8) +[Ko+ Ka@ (Xn-1, Xn+1, @) ]dp (Xn, Xn+1,8)
............... 3.7
Similarly,
de (Xn, Xn+1, @) [ k1 + ko + ks (Xn-1, Xn+1, @)] dp (Xn, Xn-1,8) +[Ka+ Kap (Xn-1, Xn+1, @) ]
dq) (Xn, Xn +1,a). ... 3.8
By adding equation 3.7 and 3.8, we have
dp (Xn+1,Xn, @ )< p de (Xn, Xn-1,d)
where [ =[2ky + k2 + k3 + K4 (Xn-1, Xn+1, 8 )] /[2 - K2 — K3- Ka@ (Xn-1, Xn+1, @)].
Since ki + ko +ka +2Kalimp m—oo® (Xn, Xm, @) <1,
Or, 2ky + 2ko +2k3 +4Kalimp m—w® (Xn, Xm, 8) < 2,
Or, 2k1+ Ko +k3 +2Kalimym—sawod (Xn, Xm, @) < 2 - k2 -k3 -2Kalimp m—oe( (Xn, Xm, @)
Or, 2ki + k2 +k3 +2Kalimym—aC /2 - K2 -k3 -2Kalimym—wd (Xn, Xm, 8) <1
Or,u< 1.
Hence from lemma 3.5,{xn}n=0" is @ Cauchy sequence. As X is complete, therefore
there exists x € X such that lima—.Xn = X. Next , we show that x is a fixed point of T.
From the triangle inequality and equation 3.6, we have
do (x, T, a )< (x, Tx, a) [do (X, TX, Xn+1 )+ do (X, Xn+1, @) +do (Xn+1, TX, @) ], by
lemma 3.3
<o (x, Tx,a) [dp (X, Xn+1, @) +do (Xn+1, Tx,a) [< b (X, TX, a) [de (X, Xn+1, @) +K1de
(Xn, X, @)+Kodo(Xn, Xn+1, @ )+kade (X, TX, @)+ Ka [ do (Xn, TX, a)+dg (X, Xn+1,a)]],
<o (X, Tx, a) [de (X, Xn+1, @ ) +K1de (Xn, X, @ )+Kodp(Xn, Xn+1, @ )+Kade (X, TX, @ )+
kadey (Xn, Xn+1,@)+Ka & (xn, TX, @) [de (Xn, X, @) +d¢ (X, TX, a)]]
< (x, Tx, a) [( 1+ks )dy (X, Xn+1, @) +( K1+ Kadh (xn, TX, @) ) dp (X,Xn, @) + Kody(Xn,
Xn+1, @ )+ (ka +ks & (xn, TX, @) ]do (X, T X, @).
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[1- k3-kad (xn, TX, @) ]do (X, T x,2)< D (x, Tx, a)[( 1+ka )de (X, Xn+1, @) +( K1+ Kach
(Xn, TX, @) ) do (X,Xn, @) + kodp(Xn, Xn+1, @ ).
3.9

Similarly,

[1- ko-Kad (xn, TX, @) ]do (X, T x,a)<d (x, Tx, a)[( 1+kas )dg (X, Xn+1, @) +( K1t Kach
(Xn, TX, @) ) do (X,Xn, @ ) +Kado(Xn, Xn+1, @ )].
3.10

By adding 3.9 and 3.10, we have,
[2- ko —ks-2ka d (xn, TX, @) ]dp (X, T x, 2 )< (x, Tx, a )[2( 1+ka )do (X, Xn+1, @) +2( K1+
Kad (xn, TX, @) ) dep (X,Xn, @) +( kot k3)do(xn, Xn+1,a)] — 0, as n—oo. This implies that

[2- ka—ks-2ka d (xn, TX, @) ]do (x,T x,2)<0.

Since [2- ko—ks-2ka b (xn, TX,a) ]> 0, we get

do (X,Tx,a)=0 implies x = Tx.

Now, we show that x is the unique fixed point of T. Assume that x” is another fixed
point of T, then we have to prove that Tx" =x".

do (X, X", a)=dy (TX, T X, a)<kidy (X, X", a) +kody (X, TX,a) + kady (X", TX",a) +
Ka[do (X, TX', ) +d, (X, TXx,a)]

<kidy (X, X", @) +kady (X, TX,a) +kady (X, TX",a) +Ka [dy (X, X", a) +dy (X", X,a)]

<(ki + 2Ks) do (x,x", @)

Implies (1-k1 - 2ks) do (x, X", 2 )< 0.

K1+ k2 +k3 +2ka< k1 + k2 +k3z +2Kalimy m—oo (Xn, Xm, @) < 1

implies (1-ki - 2ks) >0, iex = x". Hence T has a unique fixed point of X.

Remark 3.8From the symmetry of the distance function d, it is easy to prove similar to
that done in [ 8] that k> = ks, thus the inequality 3.6 is equivalent to the following inequality

do (Tx, Ty, a)<kidy (X, y,2) +Kko[doy (X, TX,a) + do (V,TYy,a)]+ ka[do (y, TX, Q)
+dy (x, Ty,a), .....3.11

where ki>0, for I =1, 2, 4 and for each xoe X,

k1,+ 2Kz +2Kalimym—aod (Xn, Xm, a) < 1.

If k1 = ko = 0 and ks € [0, '2) in inequality 3.11, we obtain generalization of [11] in
extended b, — metric space.

Theorem 3.9Let ( X, dy ) be a complete extended b, — metric space with ¢ : X xXx
X—[ 1, ).

If T:X — X satisfies the inequality

dp (T, Ty, a)<kdp (X, y,2a) + ko [de (X, TX, @) + do (v,Ty, a )], .....
3.12 for each x, y € X, where ki, k2 € [0, 1/3). Moreover, for each xo € X,

liMy,m—e® (Xn, Xm, @ )k2< 1, then T has a unique fixed point.

Proof-Let us choose an arbitrary Xo ¢ X and define the iterative sequence {xn}n=0" by
Xn = T"Xo for all n > 1.

If Xn = Xn-1, then X, is a fixed point of T the proof holds. So suppose Xn # xn-1 for all n >
1. Then from equation 3.12, we h aved, (TXn, TXn-1, @ )< k1dy (Xn, Xn-1, @) + K2 [de (Xn, TXn,
a)+ do (Xn-1,TXn-1, a)]

= Kidy (Xn, Xn-1, @) *+ k2 [dp (Xn, Xn+1,a) + do (Xn-1,Xn, @)]
(1 —k2)de (Xn, Xn+1, @ )< (k1 +ka)dy (Xn, Xn-1, @)
dp (Xn, Xn+1, @ )< (ki +Ka)dy (Xn, Xn-1, ) /(1 —Kk2)
= Mdg (Xn, Xn-1, @).
Wherep = ( k1 +ka )/(1 — k2). Since ki, ko € [0, 1/3),sou <1,
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Hence from lemma 3.5, {Xn}n=0” is @ Cauchy sequence. As X is complete, therefore
there exists x € X such that limy—.Xn = X. Next , we show that x is a fixed point of T. From
the triangle inequality and equation 3.12, we have

do (x, Tx, a)< P (x, Tx,a) [de (X, TX, Xn+1 )+ do (X, Xn+1, @) +do (Xn+1, TX, @) ],

< ¢ x, Tx, a ) [de (X, Xnr1, @ ) +do (Xne, X, a ) ]
< (x, Tx,a) [de (X, Xn+1, @) +K1dey (Xn, X, @ )+Ko[dp(Xn, Xn+1, @)+ do (X, TX, @)].

So, [1-koo(x, Tx,a)]de (x,Tx,a) <0, as n—oo.

Since liMpm—oo® (Xn, Xm, 8 )Ko< 1,

We have [ 1 - koo(x, Tx,a)] >0,andso dy (X, TX,a) =0 iex = Tx

Now, we show that x is the unique fixed point of T. Assume that x” is another fixed
point of T, then we have to prove that Tx" = x".

do (X, X", a) =dy (TX, TX", a)<kidy (X, X", a) +ka[do (X, TX,a) + dp (X", TX", a)]

< kidy (X, X", @ )<do (X, X", a ), which is contradictions. Hence T has a

unique fixed point of X.

For x,y € X and ¢,d € [0, 1]. We will use the following notations

Neyc, (X, y) =max {dy (X, ¥, a),cidy (X, TX, a),c1dy (y, Ty, a),c2/2[dy (X, Ty, a) +dy
(y, Tx, a)].

Theorem 3.9Let ( X, dy ) be a complete extended b2 — metric space. LetT : X— C B(X)
be a multi- valued mapping having the property that there exists
C1, C2¢ [0,1] and me [ 0,1] such that

(i) For each Xoe X, limnm—wn c2 (Xn, Xm, @ ) < 1, here Xn = T"Xo,

(i) Hp ( Tx, Ty,a ) <n Ney e, (X, y,a ) for all x, y,ae X.

Then for every xoe X, there exists pe [0,1] and a sequence {xn}nNOf iterates from X
such that for every neN,

dq) (Xn, Xn+1, a) < 1) d(b (Xn-l, Xn, a). .........................
3.13

Proof- Let us choose an arbitrary Xo € X and x1 € Txo consider

w=max {mn, mcad (Xn-1, Xn+1, @ )/2 - 1 c20 (Xn-1, Xn+1, @) }.

Clearly, p< 1. If X1 = Xo, then for every n € N, the sequence {Xn}nen given by Xn = Xo
satisfies equation 3.13. Since

dp (X1, Txz,a) < dg (Txo, TX1, a) < Hg (TXo, TX1, @) <1 Ne, ¢, (Xo, X1,2),

there exists X2 € Tx1 such that

dp (X1, X2,a) < 1 Neyc, (Xo, X1, ).

If X2 = X1, then for every n € N, n> 1, the sequence {Xn}nen given by Xn = X1 satisfies
equation 3.13. By repeating thisprocess, we obtained a sequence {Xn}.:n Of elements from X
such that Xn+1 = TXn and 0 <dg (Xn, Xn+1, @) < 1M Nc;c, (Xn-1, Xn,a )for every n € N, n> 1. Then
we have

0 <d<p (Xn, Xn+1, a) | Ncl*CZ (Xn-l, Xn,a)

<mn max {dy (Xn-1, Xn, @),C10p (Xn-1, TXn1, @ ),C1de (Xn, TXn, @ ),C2/2[d¢ (Xn-1,
Txn,a) +dy (Xn, TXn-1,a)}

<1 max {dyp (Xn1, Xn, @),C10e (Xn-1, Xn, @ ),C2de (Xn, Xn+1, @ ),C2/2[de (Xn-1, Xn+1, @
D e 3.14

< 1M max {dq, (Xn-l, Xn, @ ),Cld(p (Xn-l, Xn, @ ),Cld(p (Xn, Xn+1, @ ),02/2 (0] (Xn-l, Xn+1, a) {d(p
(Xn-1, Xn+1, Xn) + do (Xn-1, Xn, @)+ dp (Xn, Xn+1,),
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=n max {dy (Xn-1, Xn, @),C1de (Xn-1, Xn, @ ),C10e (Xn, Xn+1, @ ),C2/2 @ (Xn-1, Xn+1, @) [do
(Xn-1, Xn, a ) + d¢ (Xn, Xnt1, @ )]}
3.15

For every n € N.If we take

max {dy (Xn-1, Xn, & ),C1de (Xn-1, Xn, @),C20y (Xn, Xn+1, @ ),C2/2 @ (Xn-1, Xn+1, @) [dp (Xn-1,
Xn, a) +

do(Xn, Xn+1, @)1}

= Cldq; (Xn, Xn+1, @ ),

Then from equation 3.14and 3.15, 0 <dg (Xn, Xn+1, @) < M c1dy (Xn, Xn+1,2 ) < nde (Xn,
Xn+1,a ). As 1< 1. So obtain the contradiction. Therefore, we have

dp (Xn, Xn+1,2) < M Ne, ¢, (Xn-1, Xn,a)

<n max {dy (Xn-1, Xn, @ ),C2¢0 (Xn-1, TXn-1, @ )/2[de (Xn-1, Xn, @ )+dy (Xn, Xn+1, @ )]}
Consequently,

dp (Xn, Xn+1, @) < Nde (Xn-1, Xn,@ ) OF dgy (Xn, Xn+1, @) < 1M 20 (Xn-1, Xn+1,@ )dg (Xn-1, Xn, @
)2 -1 c2p (Xn-1, Xn+1,8 ),

for every n € N. Thus

dy (Xn, Xn+1, @) < max {n, N 20 (Xn-1, Xn+1,8 )/2- N c20 (Xn-1, Xn+1,8 )}do (Xn-1, Xn, @),

<ndy (Xn-1, Xn, @).

Thus , the sequence {Xn}nen Satisfies equation 3.13. Hence from lemma 3.5, we
conclude that {Xn}nen is Cauchy sequence.

Theorem 3.10Let ( X, d, ) be a complete extended b, — metric space. LetT : X— C
B(X) be a multi- valued mapping having the property that there exists ci, c2€ [0,1] and ne [
0,1] such that

(i) For each xoe X, limpm—et c2¢ (Xn, Xm, @) < 1, here xn= T"Xo,

(i) Hp ( Tx, Ty,a ) <n Ne, ¢, (X, y,a ) for all x, y,ag X.(iii) T is continuous.

Then T has a fixed point in X.

Proof-From Theorem 3.11, by taking in account condition (i) and (ii), we conclude that
{Xn}nen is @ Cauchy sequence such that

Xn+1 = Txn, ........................
3.16
for everyneN . As X is complete, so there exists x € x such that limxn = X.
From inequality 3.16, by the continuity of T, it follows that
Xn+1 = TXn— Tx as n—oo.

Therefore, x € Tx, Hence T has a fixed point in X.

Theorem 3.11Let ( X, dy ) be a complete extended b, — metric space. LetT : X— C
B(X) be a multi- valued mapping having the property that there exists c1, c2¢ [0,1] and ne [
0,1] such that

(i) For each xoe X, limnm—an C2 (Xn, Xm, @ ) < 1, here Xn = T"Xo,

(i) He( Tx, Tyaa ) < m Nge, (X ya ), for all X, y,ae X.
(iii) T is x - continuous.

Then T has a fixed point in X.

Proof-From Theorem 3.11, by taking in account condition (i) and (ii), we conclude that
{Xn}nen IS @ Cauchy sequence such that

Xn+1 = TXn,
3.17

for everyneN . As X is complete, so there exists x € x such that limx, = x. Then we

have
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dp( Xn+1, TX, @) = dg (TXn, TX, a) < Hg (TXn, TX, @)

<N Neyep, (Xn, X,@ )< 1 max {de (Xn, X, a),C1de (Xn, TXn, @),c1dy (X, TX, @),c2/2[dy (Xn,
Tx,a)+de (X, Txn,a)}

<nmax {de (Xn, X, a),C10e (Xn, Xn+1, @),C10e (X, TX, a),C2/2[dy (Xn, TX, a) + dy
(X, Txn, a)}.
<nmax {de (Xn, X, a),Cale (Xn, Xn+1, @),C2dy (X, TX, a),c2/2 ¢ (xn, TX, a) [do

(Xn, TX,a) +dp (Xn,X, @) +

do (X, TX,a) +dy (X, Xn+1, )]}

<n max {dy, (Xn, X, a),C10e (Xn, Xn+1, @),C1dp (X, TX, a),C2/2 ¢ (Xxn, TX,a) [dy (Xn, X, &
) +do (X, Xn+1, @) +

do (X, TX,a)]}F e 3.18

for every n € N. Since limxn = X and limy—dy (Xn, Xn+1, @) =0. Then

Myl (Xn+1, TX, @) =do (X, T X, Q).

Therefore, by taking limit n —o0 in equation 3.15, we have

dq) (X, T X, a )S n Ncl'CZ (Xn, X,a )

<nmax {0, ,c1dy (X, TX, a),ColiMu—w @ (xn, TX, a)dy (X, TX, a)/2}

<nmax {nct,nc2liMee (xn, TX,a)/2}de (X, TX, Q).

As max {n c1,n calim—e @ (xn, TX, @) /2} <1, so from above inequality

do (X, Tx,a)<d, (X, Tx,a), which is a contradiction, therefore d, (x, Tx,a)=0iex €
Tx. Hence T has a fixed point in X.

Theorem 3.12A multi- valued mapping T : X— C B(X) has a fixed point in a
complete extended b, — metric space( X, dy ), if it satisfies the following two axioms,

(i)There exists c1, c2¢ [0,1] and ne [ 0,1] such that

Ho( Tx, Ty,a ) < m Nee, (x, ya ), for all  x, yae X. ...

3.19
(i) For each xo € X, max {ncilimym—ow® (Xn, Xm, a ) , Nc2liMymood (Xn, Xm, @) } < 1,here
Xn=T"Xo...... 3.20

Proof-From Theorem 3.10, by taking in account condition (i) and (ii), we conclude that

{Xn}nen IS @ Cauchy sequence such that
Xn+1 = TXn,

3.21

for everyneN . As X is complete, so there exists x € x such that limx, = X. Then for
every ne N, we have

dp( Xn+1,TX, @) =dg (Txn, TX, a) <Hg (TXn, TX, @)

<N Nejc, (Xn, x,a) <M max {dy (Xn, X, a),C1dy (Xn, TXn, @),Cady (X, TX, a),c2/2[dy (Xn,

Tx,a)+de (X, TXn,a)}
<n max {dy (Xn, X, a),C1dp (Xn, Xn+1, @),C2dy (X, TX, @),c2/2[dp (Xn, TX, a) + dg
(X, Txn,a)}.
<n max {dy (Xn, X, a),C1dp (Xn, Xn+1, @ ),C1dep (X, TX, @),C2/2 ¢ (xn, TX, a) [dg
(Xn, TX, @) +do (Xn,X, @) +
do (X, Xn+1,@) +de (X, TX, a)]}
<n max {de (Xn, X, a),C10e (Xn, Xn+1, a),C1dp (X, TX, a),C2/2 ¢ (Xxn, TX,a) [dp (Xn, X, &
) +do (X, Xn+1, @) +
do (x, TX, @ )]},
3.22
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Now, we will take two cases:
Case(l) If dy (x, T x, a )< limn—eSUpdg (Xn, TX, @ ), then there exists a subsequence {Xn,

}n.sN of {Xn} such that
do (X, T X, @ )< limi—wedg (Xn, 1, TX, @), so for each &> 0, there exists l.e N such that for

every 1 ¢ N, 1 >l;, we have, dy (X, T X, a ) —&< dp (Xn, TX, @ )
<nmax{ d¢ (Xn,, X, @), C1 dg (Xn;,Xn,; , @),C1dg (X, TX, @), C2 {dd (Xn, TX, @)+ dgp (Xn,1, X, @)

/2}} <nmax { dy (X, X, @), €1 dp (Xn;Xny,; » @ ),C1dg (X, TX, @), C2h (Xn;,
Tx, a ){ dd (xn, X, @ )+ dp (Xn,p, X, @) +dg (x, Tx, @) /2}}.
3.23 Since limn—ocXn= X, liMiocdg (X Xn,, , @) =

0. Therefore, by taking lim n—o0 in equation 3.23, we haved, (X, T X, a ) —e< n max{0, c1dy
(X, Tx, @), calimiseoh (xn, TX, @) dg (X, TX, @ )/2}
<nmax{ ci, ColiMwd (xn, TX, a)/2 }d¢ (x, TX, a )For every > 0. Thus do (X, T X, @
)< max{n c1 neca2lim—xb (xn, TX, @ )2 ¥y (X, TX, a).As max{n c1 nca2limi—uwb (xn, TX, @
)2 } < 1, so from abov inequalityd, (x, T x, a )<do, (X, T X, a ), which is
impossible,therefored, (x, T x,a ) =0 ie x € Tx. Hence T has a fixed point in X.
Case(ll) If dy (X, T X, @ )> limy—.Supdg (Xn, TX, @), then there exists No € N such that
for every n > No, we have dd(xn, Tx, a) <dy (X, T X, a ).From the triangle inequality
do (x, T x, a)< (x, Tx, a )[ dp (x, TX, xn+1 ) + dd (X, Xn+1,2 ) + dd ( xn+1,TX, @) ] by
lemma 3.5,
<o (x, Tx, a)[ do (x, xn+1,a2 ) + dd ( xn+1,TX, @) ]
We obtain
do (X, TX,a) - (x, Tx,a)dd (X, xn+1,a ) < (X, Tx, a ) dp ( xn+1,TX, )
<o (x, Tx, a) n max {dy (Xn, X, @),C10y (Xn, Xn+1, @ ),C1de (X, TX, @ ),c2/2[dy (Xn,
Tx,a)+de (X, Txn, a)}.
<o (x, Tx, a) nmax {dy (Xn, X, a),C1dy (Xn, Xn+1, @),C20e (X, TX, a),C2/2 ® (X,
TX, a) [de (Xn, X, @) + do (X, TX, @ )+tde (X, Xn+1, @ ) }.  cviiiiiiiiinenne.
3.24
Since limp—oXn= X,  liMpoew dp (Xn+1,Xn , @ ) = 0. Therefore, by taking lim n—oo in
equation 3.24, we have
do X, TX,8) -0 (x, Tx, a) db (x, xn+1,a2 ) < (x, Tx, a ) n max {0, cady (X, T X, a
),C2/2liMp—oh (Xn, TX, @) do (X, TX, a)}
< (x, Tx, a ) max {n c1 ,n cliMw @ (xn, TXx, a ) /2} dy (X, TX, a ),
....................... 3.25
From condition (ii), since
¢ (x, Tx, a) max {n c1,n c2limy—0 @ (xn, TX, a)/2} <1,50 from 3.24,
do (x, Tx, a)<dy (X, TX, a), which is impossible, therefore d, (x, Tx, a) = 0 implies
X = Tx. Hence T has a fixed point in X.

Example 3.13 Let X ={(a, 0): 0 =1/2,1/2% ..., 1/2", ... } U {0, 1} CR® and letd,
(X, ¥, z ) denote the sequenceof the area of triangle with vertex x, y, z ¢ X

d(P ( ((X, 0) J(Ba O) ,(O, 1) ) = ( a— B )2/49 Cb ( ((X, 0) 7(Ba 0) 7(09 1) ) =a +B +1. Then X is an
complete extendedb> - metric space. Define mapping T : X— C B(X) as

(0,0), a=(0,0).
T(a, 0) =
(12", 0),0 = 12", n=0,1,2,...
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Hence T is continuous.
SinceNe,c, ((1/2",0),( 0, 0), (0, 1)) = 0?/4 = 1/4 (1/2")? = 1/4x2*" for all c1, c2 & [0, 1]/

we get
Ho( T(1/2", 0), T(0, 0), (0, 1)) = Ho( (1/27%,0), (0, 0), (0, 1)) = 1/4 (L/2™Y)? =
1/4x22+2 < 1/4 Neye, ((1/2",0),(0,0), (0, 1)).

Where n = %. Also for each xo = (ao, 0 ) € X.
liMy,m—e 1 €2 @( (0tn, 0),( am, 0),(0, 1)) = liMym—w nc2( (1/27,0),(2/2™,0),(0, 1)) <

= liMpm—o1 €2 O(Xn, Xm, @) < 1.
Clearly it satisfy all the condition of theorem 3.10 and so there exists a fixed point.
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