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Abstract: An earlier detection and diagnosis of lung cancer requires a major task known as 

lung nodule candidate classification. To detect the lung nodule candidate, a Multi-

Resolution 3-Dimensional Convolutional Neural Network and Knowledge Transfer 

(MR3DCNN-KT) model has been designed that can extract the contextual information 

between multiple samples of lung nodule image for increasing the detection accuracy. But, 

this model was not able to classify few types of nodules that may cause the false detection. 

Also, the training data preparation was high difficult due to the manual labeling that 

consumes more time and the label mistakes were introduced while using large scale 

datasets since 3D-CNN requires more number of samples. Hence this article proposes an 

Iteratively Optimized MR3DCNN-KT (IO-MR3DCNN-KT) model that establishes 

automated weak label initialization to classify the large scale lung nodule image datasets. 

This model is trained on dynamically updated training datasets in an iterative manner. A 

fast and automatic weak labeling scheme is applied to generate the initial training dataset. 

Nonetheless, the computational complexity of 3D-CNN structure is extremely high since it 

requires the significant number of computational resources. As a result, an IO-MR3D 

Depthwise Separable CNN and KT (IO-MR3D-DSCNN-KT) model is proposed that 

introduces the bottleneck-based 3D-DSCNN structure to reduce the computational 

complexity. This model can extract both spatial and temporal features using basic 

depthwise convolution and pointwise convolution, accordingly. Based on this model, the 

number of parameters used in the 3D-CNN structure is significantly reduced to 

automatically classify the lung nodule candidates. Finally, the experimental results show 

that the proposed model promises more accuracy and robustness compared to the 

MR3DCNN-KT model. 

 

Keywords—Lung nodule candidate detection, MR3DCNN-KT, Bottleneck-based CNN, 

Weak label initialization, Depthwise convolution, pointwise convolution. 

 

1. INTRODUCTION 

 

Lung cancer is actually one of the leading causes of death and is stated to have poor levels of 

post-diagnosis survival in developing and undeveloped nations. Nevertheless, lung cancer 

may have a greater possibility of being recovered successfully if it is diagnosed immediately 
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instead of later. The prognosis of lung cancer is primarily based on the classification of the 

pulmonary or lung nodule. An essential means of successful medical treatment and avoidance 

of lung cancer is early lung nodule classification. The key recommendation for the 

classification of lung nodules will also be the Computed Tomography (CT) scans [1]. In fact, 

spatial analysis of CT images is a long-term method for radiological experts, since hundreds 

of samples are usually present on a specific scan and fewer than 100 voxels are available on a 

given nodule. 

Modern Computer-Aided Detection (CAD) technologies were also designed to identify tiny 

nodules of the lung. This can be separated into CADe (Detection system) and CADs 

(Diagnostic system) [2-300]. CADe's primary objective is to identify Region-Of-Interests 

(ROIs) in the image, which may reveal different changes while the CADs's objective is to 

diagnose observed changes by category, volume, level and progress of epidemics. Two 

methods include the treatment of pulmonary nodules via CADs: raw nodule classification and 

nodule candidate detection [4]. The detection is important to the specific choice of lung 

nodules. The detection of a nodule candidate does also pose many difficulties such as 

radiological fluctuation and may lead some nodules to be invisible, while other non-nodules 

are termed as lung nodules that vary in scales and structure. 

To avoid these limitations, an MRCNN-KT model was suggested in which standard 2D-CNN 

algorithm was enhanced as the new MR model via transferring its knowledge [5]. In this 

model, the knowledge was transferred from the source training processes and thus all the 

side-output branches in the model were considered for analyzing the features of various 

scales and resolutions from different depth layers in the CNN that classifies the lung nodule 

candidates. Moreover, objective and loss functions were developed as image-wise instead of 

pixel-wise representations. Further, samples creation and data augmentation were achieved 

for both training and testing the adapted classifier for identifying lung nodule candidates. 

Though the absolute lung nodule was often scattered on many samples, this 2D-CNN 

framework was restricted to extract the context features between multiple samples. 

So, an MR3DCNN-KT model was introduced [6] to extract the context features between 

many samples. In this model, 3D convolutions were utilized for extracting the spatial and 

temporal features so that the context features encoded in the many neighboring samples were 

discovered. Based on this model, many channels of data were created from the input frames 

and the data from all the channels was combined for defining the final feature vector. 

Moreover, the outputs of high-level features were regularized and variety of outputs from 

CNN models was fused for increasing the detection accuracy. On the contrary, few types of 

nodules were not completely defined or classified which may lead to the false detection of 

lung nodule candidates. Although 3D-CNN for lung nodule candidate classification has high 

accuracy with an acceptable error for mistakenly labeled training networks, the training data 

preparation has high complexity since manual labeling was time-consuming and may 

introduce label errors in large scale datasets. Also, 3D-CNN needs more amount of samples 

than the 2D-CNN structure.    

Therefore in this paper, an Iteratively Optimized MR3DCNN-KT (IO-MR3DCNN-KT) 

model is proposed that introduces automated weak label initialization for classifying the large 

scale datasets. This proposed IO-MR3DCNN-KT model is iteratively trained on dynamically 

updated training datasets. Particularly, the initial training dataset is generated based on the 

fast and automated weak labeling process that utilizes the maximal spatial overlap rate 

method. On the other hand, the 3D-CNN algorithm has high computational complexity due to 

its significant amount of computational resources. Hence, an IO-MR3D Depthwise Separable 

CNN and KT (IO-MR3D-DSCNN-KT) model is proposed for reducing the computational 
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complexity. In this model, a bottleneck-based 3D-DSCNN structure is introduced wherein the 

CT scan (lung nodule) image slices is split into spatial and temporal information. For learning 

spatial information, a fundamental depthwise convolution notion is applied to each lung 

image whereas the 3D pointwise convolution is applied for learning the temporal information 

i..e, the linear combination among sequential lung nodule image slices. This convolution is 

modified for reducing the parameter sizes of the 3D-CNN and efficiently achieving the lung 

nodule candidate detection. Thus, this model can reduce the computational complexity of 3D-

CNN structure and learn the large scale lung nodule image datasets with labbeling weak 

labels automatically. 

The rest of the article is prepared as follows: Section II presents the previous works 

accociated with the lung/pulmonary nodule detection using CNN. Section III explains the 

methodology of proposed model. Section IV demonstrates the experimental results and 

Section V concludes the article.    

        

2. LITERATURE SURVEY 

 

A multi-kernel based method [7] was proposed for selecting the features and learning the 

imbalanced data in lung nodule CAD. In this method, a multi-kernel feature selection was 

achieved on the basis of pairwise similarities from the feature level and a multi-kernel over-

sampling for the imbalanced data learning. However, the computational complexity of this 

method was high. 

A novel pulmonary nodule detection method [8] was proposed on the basis of Deep CNN 

(DCNN). Initially, a deconvolutional structure was introduced to Faster Region-based CNN 

(Faster R-CNN) for detecting lung nodule candidates on axial slices. After that, a 3D DCNN 

was proposed with the aid of dropout scheme for reducing the false positive in candidate 

detection. However, it does not consider the information between the small patches that were 

extracted in a large patch. 

A novel approach was proposed using 3D CNN [9] to minimize the false positive in 

automated pulmonary nodule detection from volumetric CT scans. In this approach, more 

affluent spatial features were encoded and more representative features were extracted via 

their hierarchical structure trained with 3D samples. Also, an effective method was applied to 

encode the multilevel context information. Then, the final classification results were obtained 

via fusing the probability prediction results of these networks. But, the variances between the 

large variants of lung nodules and the restricted training dataset were not resolved.       

A novel multi-view multi-scale CNN [10] was proposed for classifying the types of lung 

nodules from CT images. Initially, the spherical surface centred at nodules was approximated 

by icosahedra and the normalized sampling was captured for CT values on each circular view 

at a given highest radius. Then, intensity analysis was applied based on the sampled values 

for achieving estimated radius for each nodule. After that, the re-sampling was built followed 

by the high-frequency content measure analysis for choosing which views were richer in 

information. At last, the nodule captures at sorted scales and views were constructed for pre-

training the view independent CNNs model and training the multi-view CNNs model with the 

maximum pooling. However, it cannot detect the tiny nodules and juxta-pleural nodules 

effectively.      

A novel Multi-scale Gradual Integration CNN (MGI-CNN) algorithm [11] was suggested to 

learn the feature representations of multi-scale inputs using the gradual feature extraction 

scheme. In this algorithm, three major schemes were applied such as exploiting multi-scale 

inputs including various levels of context features, employing abstract information inherent in 
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various inputs scales with GI and training multi-stream feature fusion in an end-to-end way. 

Nonetheless, this algorithm has high False Positive (FP) rate. 

A fusion algorithm [12] was introduced by fusing handcrafting features and the features 

trained at the output layers of a 3D CNN. Originally, various handcrafted features were 

extracted along with the intensity, geometric and texture features based on the gray-level co-

occurrence matrix. Then, 3D CNNs were trained to extract the CNN features trained at the 

output layer. For each 3D CNN, the CNN features integrated with the handcrafted features 

were given as the input to the SVM fused with the sequential forward feature choice 

algorithm to elect the best feature subset and built the classifiers. But, this algorithm has less 

robustness.   

 

3. PROPOSED METHODOLOGY 

 

In this section, the proposed methodology for detecting the lung nodule candidates is 

explained in brief. At first, an IO-MR3DCNN-KT model is described using automated weak 

label initialization scheme. Then, an IO-MR3DSCNN-KT model is explained. The block 

diagram of the proposed lung nodule candidate detection models is shown in Figure 1. 

 

 
Figure 1. Block Diagram for Proposed Lung Nodule Detection Model 

 

3.1 An Iterative Optimization of MR3DCNN-KT with Automated Weak Label 

Initialization for Lung Nodule Candidate Detection 

Initially, the lung images are acquired from the Kaggle’s Data Science Bowl 2017 (KDSB17) 

dataset. This dataset provides CT scan images of patients including their cancer status. But, it 

does not offer the positions or sizes of lung nodules. It comprises 2101 axial scans of patient 

chest cavities. Of the 2101, 1261 are belonging to the training set and 840 are belonging to 

the testing set. Each CT scan is labeled as “with cancer” if the related patient is diagnosed 

with cancer within 1 year of the scan; or else, labeled as “without cancer”. 

Pre-processing 

Every scan is comprised of manifold 2D axial scans taken in sequence with pixel values in 

the range (−1024,3071) respective to Hounsfield radiodensity units. The amount of slices, 

their thickness and scales are varied between each scan. Also, noise removal, spatial 

smoothing, temporal pre-whitening and linear registration to the lung template space are 

performed by the FSL FLIRT and FEAT commands. Once pre-processing is completed, the 

dictionary learning and sparse coding methods are used for functional lung networks 

restoration for each patient. The input for dictionary learning is a matrix 𝑋 ∈ ℜ𝑡×𝑛 with 𝑡 

rows and 𝑛 columns containing normalized image pixels from 𝑛 lung voxels of an individual 
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patient. The output has one learned dictionary 𝐷 and a sparse coefficient matrix 𝑎 ∈ ℜ𝑚×𝑛 

with respect to 𝑋 = 𝐷 × 𝑎 + 𝜀 where 𝜀 denotes the error and 𝑚 denotes the fixed dictionary 

size. After that, each row of the output coefficient matrix 𝑎 is mapped to the lung volume 

space as a 3D spatial map of functional lung network. 

IO-MR3DCNN-KT 

This novel IO-MR3DCNN-KT is iteratively trained on dynamically updated training datasets. 

In particular, the initial training dataset is created by using a fast automated weak labeling 

mechanism that uses the maximal spatial overlap rate scheme for increasing the accuracy on 

detection with adequate training initialization. The classification labels are generated from 

KDSB17 dataset by using a clustering method based on the spatial overlap rate metric. Based 

on the classification labels, the large scale dataset of KDSB17 is used for detecting the lung 

nodule candidates.  

According to the classification labels from KDSB17 dataset and the individual functional 

networks derived from KDSB17 dataset, the initial network labels are automatically and 

approximately allocated to each networks by computing the spatial overlap rate similarity 

matrix. The spatial overlap rate is computed as: 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑟𝑎𝑡𝑒 = ∑
𝑚𝑖𝑛(𝑉𝑘,𝑊𝑘)

𝑉𝑘+𝑊𝑘
2⁄

|𝑉|
𝑘=1          (1) 

In Eq. (1), 𝑉𝑘 and 𝑊𝑘 are the activation scores of voxel 𝑘 in network volume maps 𝑉 and 𝑊, 

accordingly. The empirical thresholding process is applied on the similarity matrix for 

ensuring the accuracy of the initial label assigned. For each individual network map, the label 

is allocated as classification labels whose spatial overlap rate is the maximum among all 

classification labels. If no similarity value is higher than 0.2, the respective network map is 

assigned the label 0 which will not be used for training. The IO-MR3DCNN-KT training 

process can iterate over 𝑙 input 3D network maps for the maximum 𝐼 iterations, initiating 

with the initial weak labels based on the spatial overlap rate. This spatial overlap rate-based 

classification achieves higher accuracy on detection while the CNN is able to correct the label 

for detection with increased accuracy. This label correction ability is adopted in this IO-

MR3DCNN-KT model for increasing the previously allocated training labels during each 

iteration and so introducing the changes between labels detections after training and the 

labels before training. Once the iterative optimization is completed, a balance can be 

achieved by the IO-MR3DCNN-KT model while no significant changes happens; thus 

providing the optimized and well-trained MR3DCNN-KT model for functional lung nodule 

detection.   

Algorithm: IO-MR3DCNN-KT Training Process 

Input: KDSB17 dataset 

Initialization:  
1. Compute pairwise overlap rate between individual functional networks and functional 

labels → 𝑙 × 𝑛 similarity matrix 𝑆0; 

2. Threshold overlap rate value in 𝑆 less than 0.2 to be 0; 

 𝒇𝒐𝒓(𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑟𝑜𝑤 𝑆𝑖
0 𝑖𝑛 𝑆0)  

  𝒊𝒇(𝑆𝑖
0 = 0)  

      𝑙𝑎𝑏𝑒𝑙𝑖 = 0; 

  𝒆𝒍𝒔𝒆 

   𝑙𝑎𝑏𝑒𝑙𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑆𝑖
0); 

   {𝑎𝑟𝑔𝑚𝑎𝑥(𝑆𝑖
0) ∈ 𝑁|1 ≤ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑆𝑖

0) ≤ 𝑛}; 

  𝒆𝒏𝒅 𝒊𝒇 
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 𝒆𝒏𝒅 𝒇𝒐𝒓 

 Return 𝑙𝑎𝑏𝑒𝑙0 

//Deep Iterative Training: using no zero labeled individual functional networks and 𝑙𝑎𝑏𝑒𝑙0 as 

initial training pairs 

 𝒇𝒐𝒓(𝑖 ∈ {0,1,2, … , 𝑚𝑎𝑥𝐼𝑡𝑒𝑟}) 
  Train MR3DCNN-KT on 

   [𝑛𝑜 𝑧𝑒𝑟𝑜 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠, 𝑙𝑎𝑏𝑒𝑙𝑖] 

   𝑙𝑎𝑏𝑒𝑙𝑖+1 = 𝑀𝑅3𝐷𝐶𝑁𝑁 − 𝐾𝑇𝑚𝑜𝑑𝑒𝑙 classify on all functional networks; 

  𝑙𝑎𝑏𝑒𝑙_𝑣𝑎𝑟 = 𝑣𝑎𝑟(𝑙𝑎𝑏𝑒𝑙𝑖, 𝑙𝑎𝑏𝑒𝑙𝑖+1) 

  𝒊𝒇(|𝑙𝑎𝑏𝑒𝑙𝑣𝑎𝑟|/𝑙 < 0.4%) 

   Break 

  𝒆𝒏𝒅 𝒊𝒇 

 𝒆𝒏𝒅 𝒇𝒐𝒓 

 Return 𝑀𝑅3𝐷𝐶𝑁𝑁 − 𝐾𝑇𝑚𝑜𝑑𝑒𝑙 
Though it achieves better accuracy on detection of lung nodules, this 3D-CNN has high 

computational complexity due to the requirement of amount of parameters in 3D-CNN 

model. The 3D-CNN parameter is computed as: 

𝑃3𝐷 = 𝑛 × 𝑐 × 𝑑(𝑘 × 𝑘 + 1)                    (2) 

In Eq. (2), 𝑛 denotes the number of filters, 𝑘 represents the spatial size of the convolutional 

kernel, 𝑑 denotes the amount of temporal images and 𝑐 indicates the amount of channels. 

When the input channels increase, the amount of parameter also increases. To tackle this 

problem, IO-MR3D-DSCNN-KT model is proposed which is explained below. 

 

3.2 Effective Lung Nodule Candidate Detection Using Iteratively Optimized Multi-

Resolution 3D-Depthwise Separable CNN and Knowledge Transfer 

A novel IO-MR3D-DSCNN-KT model is proposed for effectively understanding the haptic 

force from lung images. For this purpose, the image is split into spatial and temporal 

information which are learnt independently and sequentially. In this model, the following 

processes are executed: 

1. Spatial feature extraction: The 2D depthwise convolution is applied to each slice of 

the input image i.e., the process of learning the spatial information independent of the 

channel is applied to each slice. 

2. Temporal feature extraction: The 3D pointwise convolution is applied for learning the 

linear combination among the channels among the channels of adjacent slices. 

Initially, this 3D-DSCNN structure extracts the spatial information on the basis of the 2D 

depthwise convolution filters applied in the images. In this model, the shared weight 

parameters are used and the amount of these parameters is significantly reduced compared to 

the standard 3D-CNN model. Similarly, the 3D pointwise convolution filters are applied for 

extracting the temporal feature extraction. The concept of proposed IO-MR3D-DSCNN-KT 

model is shown in Figure 2. 

The depthwise convolution filters 𝐹𝑑𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒 ∈ ℜ𝑘×𝑘 are trained separately based on their 

respective channels. This filter is fused with the pointwise convolution filter 𝐹𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 ∈

ℜ1×1 for learning the correlation among the channels in the layer ends. While increasing the 

input channels, only the respective amount of filters is increased whereas the number of 

parameters used in the standard 3D-CNN model is not increased. Therefore, the sizes of the 

weight parameters are also derived as: 

𝑃3𝐷 = 𝑛 × (𝑐 × 𝑑 + 1) + 𝑐 × (𝑘 × 𝑘 + 1)                    (3) 
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Figure 2. Concept of Proposed IO-MR3D-DSCNN-KT Model 

 

This bottleneck 3D module is illustrated in Figure 3 for the inverted residual and basic linear 

block-based modules. The first layer of this module for increasing the number of channels is 

the pointwise convolution. The second layer is the depthwise convolutional filter with a 𝑎 ×
𝑎 kernel and the 3D pointwise convolution is used in the last layer for learning the temporal 

information. Also, the depthwise convolutional filters are stacked successively for converting 

the temporal information to the salient information for detecting the lung nodules. The details 

of the network architecture of the IO-MR3D-DSCNN-KT model are provided in Table 1. 

 

Table 1. Details of Network Structure of the IO-MR3D-DSCNN-KT Model 

Layers 
Expand 

Channels 

Output 

Channels 

Spatial 

Stride 

Kernel 

Depth 

Depth 

Stride 

Conv2D 3 × 3  - 32 1 1 1 

Bottleneck 3D 3 × 3 (a) 32 16 1 1 1 

Bottleneck 3D 3 × 3 (a) 64 24 1 1 1 

Bottleneck 3D 3 × 3 (a) 96 32 1 1 1 

Bottleneck 3D 3 × 3 (b) 128 64 2 3 2 

Bottleneck 3D 3 × 3 (b) 192 92 2 3 2 

Bottleneck 3D 3 × 3 (b) 384 128 2 3 2 

Bottleneck 3D 3 × 3 (b) 448 192 2 3 2 

Conv2D 1 × 1  - 1280 2 2 2 

Avg. Pool. 4 × 4 - - 1 1 - 

Fully Connected (FC) 1 - 1 - - - 

 

 

Image 1 Image 2 Image N 

⋯ 

   ⋯ 

Shared Shared 

2DConv 

3D Pointwise 

Convolution 
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Figure 3. IO-MR3D-DSCNN-KT Model based on (a) Inverted Residual Block and (b) Linear 

Block (Depthwise Convolutional Filter) 

 

      4.    RESULTS AND DISCUSSION 

 

In this section, the effectiveness of IO-MR3DCNN-KT and IO-MR3D-DSCNN-KT models 

is evaluated as well as compared with the MR3DCNN-KT model using MATLAB 2018a. 

Given a KDSB17 dataset, 1261 data are used for training and 840 data are u sed for testing 

process. This comparative analysis is performed in terms of precision, recall, f-measure, 

accuracy, error rate and separability. Figure 4 shows the experimental outcomes of the IO-

MR3DCNN-KT and existing MR3DCNN-KT models for lung nodule detection. Similarly, 

Figure 5 illustrates the experimental outcomes of the IO-MR3D-DSCNN-KT and IO-

MR3DCNN-KT models for detecting the lung nodules. 

Output 

Add 

3𝐷_𝐶𝑜𝑛𝑣 1 × 1, 

Linear depth=d, 

d_stride=2   

𝑑𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒_𝐶𝑜𝑛𝑣 3 ×
3, stride=1, Relu6   

𝐶𝑜𝑛𝑣 1 × 1, Relu6   

Input 

Output 

3𝐷_𝐶𝑜𝑛𝑣 1 × 1, 

Linear depth=d, 

d_stride=2   

𝑑𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒_𝐶𝑜𝑛𝑣 3 ×
3, stride=1, Relu6   

𝐶𝑜𝑛𝑣 1 × 1, Relu6   

Input 

(a) (b) 
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(a)     (b)    (c) 

Figure 4. Results of Lung Nodule Candidate Detection Models: (a) Input Image (b) Detected 

Nodules using MR3DCNN–KT (c) Detected Nodules using IO-MR3DCNN–KT 

 

 
(a)    (b)     (c) 

Figure 5. Results of Lung Nodule Candidate Detection Models: (a) Input Image (b) Detected 

Nodules using IO-MR3DCNN–KT (c) Detected Nodules using IO-MR3D-DSCNN–KT 
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4.1 Precision 

It is a measure computed based on the detection of lung nodules at True Positive (TP) and 

False Positive (FP) rates. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                      (4) 

 
Figure 6. Comparison of Precision 

 

In Figure 6, the precision values for IO-MR3D-DSCNN-KT, IO-MR3DCNN-KT and 

MR3DCNN-KT models are illustrated. Through this analysis, it is recognized that the 

precision of IO-MR3D-DSCNN-KT is 1.84% higher than the IO-MR3DCNN-KT and 4.52% 

higher than MR3DCNN-KT models. 

4.2 Recall 

It is calculated on the basis of detecting the lung nodules at TP and False Negative (FN) rates.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (5) 

 
Figure 7. Comparison of Recall 

 

Figure 7 shows the recall values for IO-MR3D-DSCNN-KT, IO-MR3DCNN-KT and 

MR3DCNN-KT models. By using this analysis, it is noticed that the recall of IO-MR3D-

DSCNN-KT is 2.68% higher than the IO-MR3DCNN-KT and 4.53% higher than 

MR3DCNN-KT models. 

4.3 F-measure 

It is the harmonic mean of both precision and recall. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                (6) 
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Figure 8. Comparison of F-measure 

 

In Figure 8, the f-measure values for IO-MR3D-DSCNN-KT, IO-MR3DCNN-KT and 

MR3DCNN-KT models are illustrated. From this analysis, it is observed that the f-measure 

of IO-MR3D-DSCNN-KT is 2.18% higher than the IO-MR3DCNN-KT and 4.53% higher 

than MR3DCNN-KT models. 

4.4 Accuracy 

It is the ratio of accurate lung nodule detection over the total amount of instances evaluated. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                 (7) 

 
Figure 9. Comparison of Accuracy 

 

Figure 9 shows the accuracy values for IO-MR3D-DSCNN-KT, IO-MR3DCNN-KT and 

MR3DCNN-KT models. From this analysis, it is addressed that the accuracy of IO-MR3D-

DSCNN-KT is 1.06% higher than the IO-MR3DCNN-KT and 4.4% higher than MR3DCNN-

KT models. 

4.5 Error Rate 

It is measured as: 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                (8) 
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Figure 10. Comparison of Error Rate 

 

In Figure 10, the error rate values for IO-MR3D-DSCNN-KT, IO-MR3DCNN-KT and 

MR3DCNN-KT models are shown. In this graph, x-axis denotes the number of training 

epochs and y-axis denotes the error rate values. From this analysis, it is observed that the 

error rate of IO-MR3D-DSCNN-KT is 27.12% less than the IO-MR3DCNN-KT and 28.57% 

less than MR3DCNN-KT models while considering 500 training epochs. 

4.6 Separability 

It is the separability of the data representation in different layers and computed as follows: 

𝑆𝑒𝑝𝑎𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
∑ (𝑥𝑖̅̅ ̅−𝑥̅)

2
𝑖

∑ 1
𝑛𝑖−1

⁄𝑖 ∑ (𝑥𝑗
𝑖−𝑥𝑖̅̅ ̅)

2

𝑗

                  (9) 

 
Figure 11. Comparison of Separability 

 

Figure 11 shows the separability values of IO-MR3D-DSCNN-KT, IO-MR3DCNN-KT and 

MR3DCNN-KT models for different layers in CNN architecture. In this graph, x-axis denotes 

the types of CNN layers and y-axis denotes the separability values. In case of softmax layer, 

the separability of IO-MR3D-DSCNN-KT is 7.69% higher than IO-MR3DCNN-KT and 

14.29% higher than MR3DCNN-KT models. 
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5. CONCLUSION 

 

In this article, an IO-MR3DCNN-KT model is proposed for achieving training initialization 

using automated weak labeling process. This model is mainly applied for generating the 

initial training dataset which is trained in an iterative manner. But, this model has high 

computational complexity. Thus, an IO-MR3D-DSCNN-KT model is proposed that 

comprises the bottleneck-based 3D-DSCNN architecture for minimizing the computational 

complexity of 3D-CNN structure. In this model, both spatial and temporal features are 

extracted via fundamental depthwise convolution and pointwise convolution, 

correspondingly, for classifying the lung nodule candidates with reduced number of 

parameters in the 3D-CNN structure. Finally, the experimental results proved that the IO-

MR3D-DSCNN-KT model achieves better performance in terms of precision, recall, f-

measure, accuracy, error rate and separability than the both IO-MR3DCNN-KT and 

MR3DCNN-KT models. 
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