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 using simulation and real data for the daily Iraqi financial market dataset. 

 

Keywords: Heavy-tailed; Stochastic Differential Equations; Geometric Brownian Motion; 

Levy process; Tail index; Hill estimator; Direct method; Bootstrap and Double Bootstrap. 

 

1. INTRODUCTION 

 

 The tail index represents the shape parameter of heavy - tailed distributions. The term 

heavy-tailed can be used for distributions whose moments are not limited i.e., variance is infinite, 

in which case quintiles and order statistics are used. The Hill estimator (Hill, 1975) is one of the 

most widely used tools to infer the tail behavior of a distribution, but sometimes this estimator 

produces poor results. To get rid of the problem of the large bias of the Bootstrap method, (Hall, 

1990) suggested using samples with a smaller size than the original sample size, provided that 

the sample size is very large and the second order parameter  is known. To obtain a consistent 

estimator for the optimal number of order statistics that do not need restriction on the parameter 

, (Danielsson et al., 2001) used a combination of subsample Bootstrap estimates of the 

difference between two estimators based on Bootstrap sample sizes of different order. Later, 

(Drees & Kaufmann, 1998) presented a sequential process, which has yielded a consistent 

estimator of  in complete model with no need for prior information on the second order 

parameter. (Gomes et al., 2002) presented a class of semi-parametric estimators for the 

parameter  with a regularly varying tail and showed that 2nd  order parameter has a very 

significant impact when dealing with the problems of the optimization in the statistics of the 

extreme values. (Ciuperca & Mercadier, 2010) have generalized many studies on the extreme 

value theory to estimate 2nd order parameter  and extreme value index. By performing some 

numerical calculations and asymptotic normality and consistency are proven under classical 

assumptions. (Hashemifard et al., 2016) focused on heavy-tailed stochastic signals generated 
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through continuous time auto-regressive models evoked through the infinite-variance -stable 

processes with ( ). Their aim was estimating the continuous time model parameters. 

The consistency of the estimator of desired values is illustrated in the case where the sample size 

and sampling frequency approach infinity. The suggested method was applied to two real data 

types, and the experimental results showed good agreement between a model and this data. 

(Nemeth, 2020) presented new methods that combine the advantages of Kolmogrov-Smirnov 

and Bootstrap and showed that the estimators have the ability to estimate well the parameters of 

the large tail index and also the small sample sizes. 

In this paper, we generate data using two famous examples of Stochastic Differential Equations 

(S.D.E.) which are the Geometric Brownian Motion (G.B.M.) model and Black-Scholes driven 

by Levy process. Our aim is to estimate the right- tail parameter using the Direct, Bootstrap and 

Double Bootstrap methods and then comparing the three methods using the mean square errors.  

        The rest of this article is arranged as follows: Section 2 introduces the heavy tail 

distributions and their types. Stochastic differential equations; Geometric Brownian motion and 

Black- Scholes driven by Levy processes are presented in section 3. In section 4, we have 

presented the tail index; Hill estimator and our methods (the Direct, the Hall’s Bootstrap and the 

Double Bootstrap). In section 5, the simulation and real data will be presented for our methods. 

Finally the conclusions are in section 6.  

 

2: Heavy-tailed distributions 

Heavy tail distributions tends to have many extreme values as there will be more density under 

the probability density function (p.d.f.) curve. It is a probability distribution that is not 

significantly restricted ( Asmussen, 2003 ). In numerous applications the distribution’s right tail 

is important, while the left tail could be heavy or both tails may be heavy. In this paper, we have 

focused on the heavy right- tailed distribution.  

 

 

 

 

 
 Figure1: the heavy -tailed distribution 

Figure1: graph shows the right-heavy tail distribution. Obviously, the heavy tail goes to zero 

slower than the exponential distribution. 

Definition 

https://www.statisticshowto.datasciencecentral.com/wp-content/uploads/2016/05/heavy-tailed.png
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 F(X) is considered to be having a ( right) heavy tailed with tail index if  satisfies (Peng 

& Qi, 2017) :-  

     for all     and                     (1) 

Where: 

t: is the time 

x: is the random variable 

F(t): the distribution function  

Definition 

A distribution of the (r.v.) x with the distribution function is considered to be having a heavy 

(right) tail in the case where  of x is infinite for each  (Rolski & et.al., 2009), (Foss 

& et.al., 2011), i.e.,  

     for all  

There are three types of heavy-tailed distributions as follows:- 

2:1- Fat-tailed distribution 

 Fat – tailed distribution represents the heavy-tailed distribution with infinite variation. It is a 

probability distribution that shows a large skewness or kurtosis relative to the exponential or 

normal distribution. Several authors state that this type of distribution is a probability distribution 

with a tail that appears fatter than usual. The Log-normal distribution is one example of a fat – 

tailed distribution ( Bahat & et.al. , 2005). 

2:2- Sub - exponential distributions 

It is a distribution in which the largest value in the sample makes a large contribtion to the 

overall total (Mikosch, 1999).  

2:3- Long-tailed distribution 

A distribution of the r.v. x with distribution function F is considered to be having a long right- 

tailed in the case where (Asmussen, 2003) :- 

        

3: Stochastic Differential Equations (SDEs) 

 SDEs are utilized for modeling many different phenomena like the physical systems and 

unstable stock prices. The direct application of  lemma can be helped to find the solution of 

SDEs (Imkeller & Schmalfuss, 2001) and (Iacus, 2009). 

The general formula of (SDE) is (Franke & et.al., 2004):- 

                              (2) 

Where:-  

: represent change of  in a continuous time t. 

: represent drift parameter.  

: represent volatility parameter. 

: represent standard Brownian motion (continuous time and continuous space stochastic 

process) It is sometimes called the Wiener process (Iacus, 2011) . 

We will present the Geometric Brownian Motion and Levy process as a popular examples of 

Stochastic Differential Equations. 

3:1. Stochastic Differential Equations driven by Geometric Brownian Motion (GBM) 
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The (GBM) is a continuous- space and continuous-time stochastic process. As a simple model of 

market prices, many Economists prefer the Geometric Brownian motion because it is positive 

everywhere (with probability1)(Dunbar, 2016). It is an important example of SDE as it is used 

to model stock prices in mathematical finance which is called Black & Scholes (Iacus, 2009)  

and (Mikosch, 2004). It is modeled by Fisher Black and Myron Scholes (Fisher & Scholes, 

1973). 

The general formula for G.B.M. is as follows (Franke & et.al., 2004) :- 

                         (3) 

The analytical solution is: 

               (4) 

It is  easier way to work with returns: 

 
Where: 

 is an initial value. 

Note that the G.B.M has a log-normal distribution with drift and volatility  (Dunbar, 

2016). 

3:2. Stochastic Differential Equations driven by Levy process 

Levy process (L) can be defined as a stochastic process with stationary and independent 

increments. It was introduced by French mathematician Paul Levy in 1950 (Applebaum, 2009),  

(Kessler et.al., 2012) and (Klebaner, 2012). The main idea of the Levy process is to work with 

a jump in continuous time stochastic process. The jump of Levy process [ ] is 

very important to understand the behavior of these process. Inverse Gaussian process is a famous 

example of the Levy process (Kyprianou, 2014).  

The probability density function of Levy process is (Applebaum, 2009):- 

                   (5) 

Where: 

X: location parameter 

: scale parameter 

4: Tail index estimation 

There are many estimate for , but in this paper we will use the known Hill estimator to find 

the important solutions for estimating  such as the optimal selection of the sample fraction (k) 

and goodness-of-fit test (Peng and Qi, 2017). 

4:1. Hil estimator 

It is one of the most important estimators used to detect the presence of heavy tails. To define the 

Hill estimator, we assume that the observations  are nonnegative . For 

, write  for the (i th) largest value of , so that  

 
Then Hill’s estimator is defined as (Hill, 1975):- 
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             (6) 

Where:- 

K:- number of upper-order statistics. 

  tail index estimator. It is a consistent estimator for the tail index if the following are achieved 

(Massona, 1982):- 

 
Hill estimator is strongly dependent on optimal k selection. when k is small, the variance is large 

and the bias is small, while it is the opposite if k is large (Gomes & et.al., 2009) and 

(Danielsson & et.al., 2016).  
Now we will use three methods to estimate the tail parameter, which are 

4.2:Direct estimation method 

A simple method for selecting optimal k in the equation (7) directly (Peng, 2017) : 

         (7) 

Where: 

: is the Hill estimator mentioned in (6)  

K: represent the equation (8) 

n: sample size 

 and  : are the second order regular variation parameters, they can be calculated using the 

following steps:- 

a) steps to calculate  (Gomes & Pestana, 2007): 

1-                                                                         (8) 

2-                                  =1,2,3,4               (9)    

3- if  

                                                      (10) 

4- if  

           (11) 

b) we can calculate  as follows (Caeiro & Gomes, 2006): 

        (12) 

Where ,  and  are consistent estimators for ,  and  respectively 

4.3:Hall’s Bootstrap method 



International Journal of Aquatic Science  

ISSN: 2008-8019 

Vol 13, Issue 01, 2022  

 

 

113 
 

It is an important method used to estimate the parameter of the tail index by sampling data set 

with replacement. (Hall, 1990) suggested the Bootstrap method for the estimation of the Mean 

Squared Error (MSE) and selection of the smoothing parameter in non-parametric methods. 

Suppose   denote observations from the distribution function (F) and assume : 

          C and            (13) 

Where: 

c: is a constant value. 

: is a tail index 

We will estimate  using Hill estimator in equation(6). Let [  denote the 

order statistics of  and k is a smoothing parameter. Then, we will choose k to minimize mean 

square error (MSE) of   (Hall, 1990). Put     

MSE(n, k) = E                                      (14) 

Where:- 

 is the Hill estimator. 

To select k we do the following steps:- 

Drawing a resample  from . Let{  

denote the order statistics of{ , and let (Peng & Qi, 2017): 

 
Then, the Bootstrap estimate of  is:- 

          (15) 

Then choosing   to minimize . the optimal k is:  

 
for a known y  but an unknown , (Hall, 1990) proposed to estimate   by: 

                    (16) 

4.4: Double bootstrap method  

 Double Bootstrap consider the most accurate estimates which was introduced by (Danielsson  

et.al., 2001) and improved by (Qi, 2008). This method offers a solution for selecting the sample 

fraction by a two-step sub-sample Bootstrap approach. Then, we reduces the asymptotic mean 

square error Q(n,k) instead of MSE (n,k) (Peng & Qi, 2017), where: 

                    (17) 

Where 

                       (18) 

We will explain the steps of this method: 

- Drawing a resample   from   with   for some .  
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-  Determining the estimators of and   based on the bootstrap sample as  and 

, and choose: 

         (19) 

- Repeating the equation (17) with(  ) and we get  

-  The optimal  is:  

                   (20) 

 

5: Simulation study 

In order to compare the Hill estimator with other nonparametric estimators represented by the 

Direct method , Bootstrap and Double Bootstrap method, The simulation technique was adopted. 

We generate the data using two models of SDE with  and . the following sizes 

of the samples ( N= 50, 100, 150, 200, 250, 500, 800 ) and MSE criterion are used to compare 

these methods. The method with less value of MSE is the best. Then we have get tail parameter 

;  and MSE for each sample based on 100 replications . The results of the simulation 

were obtained based on a program written by R. The simulation study was carried out using two 

models.  

First model 

The data is simulated using equation (4). 
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Figure 5.1: the Geometric Brownian Motion model through the time. 

Figure (5.1) shows the movement of Geometric Brownian motion through time. It is clearly that 

the process affect by Brownian motion and always is positive. 
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Table 5.1:  MSE and for five samples based on 100 replications driven by Geometric 

Brownian motion for simulation data. 

N=50 Direct Bootstrap Double Bootstrap 

 

0.07107605 0.0102245247 0.033000000 

MSE 0.01004159 0.0001292511 0.001716803 

 

7.11581631 3.0000000000 2.000000000 

N=100  

 

0.041829245 0.0105181566 0.0223157895 

MSE 0.002247387 0.0001373524 0.0004991821 

 

0.490268148 3.0000000000 2.0000000000 

N=150  

 

0.04216307 0.0162245871 0.045960000 

MSE 0.00261230 0.0003937763 0.002791125 

 

0.25461379 3.4100000000 2.610000000 

N=200  

 

0.050240318 0.0164169738 0.054640000 

MSE 0.002988345 0.0003870336 0.003323239 

 

0.168603382 3.9500000000 2.970000000 

N=250  

 

0.056774807 0.0224340013 0.066000000 

MSE 0.003709766 0.0008237568 0.005643042 

 

0.041839528 4.1200000000 3.350000000 

N=500    

 
0.051385442 0.0229479856                       0.13840000                  

MSE 0.002843486 0.0007349886                       0.02520428 

 
0.028233823 6.0200000000 5.24000000                 

N=800    

 
0.045265601 0.0234060623 0.24053333 

MSE 0.002127585 0.0007046003 0.07481925 

 
0.021606282 8.2000000000 7.44000000 

 

 Table (5.1) represent the value of  MSE and for our model using Direct, Bootstrap and 

Double Bootstrap methods. When 100 replications, it is obvious that the Bootstrap method is 

much better than the others. We also note that the Direct method is better than the Double 

Bootstrap method when the sample size is greater than or equal to 150.  

Second model 

The data is simulated using the following model: 

               (21) 
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Figure 5.2: the Levy process through time. 

Figure (5.2) shows the movement of Levy process through time. It is clear that the process 

affects by Inverse Gaussian and always is positive. 

 

Table 5.2:  MSE and for five samples based on 100 replications. 

N=50 Direct  Bootstrap Double Bootstrap 

 

0.035319927 0.0111697464 0.0210000000 

MSE 0.002396321 0.0001245574 0.0004164086 

 

5.465085974 3.0000000000 2.0000000000 

N=100  

 

0.031221234 0.0172252821 0.045560000 

MSE 0.001191061 0.0004293483 0.002385551 

 

0.215970520 3.4400000000 3.000000000 

N=150  

 

0.038914153 0.0205659604 0.053600000 

MSE 0.001836429 0.0007201316 0.003359408 

 

0.146922287 4.0000000000 3.000000000 

N=200  

 

0.038106131 0.022992670 0.077800000 

MSE 0.001644134 0.000778499 0.007320747 
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0.100875938 4.870000000 4.000000000 

N=250  

 

0.034531429 0.030054351 0.081680000 

MSE 0.001272489 0.001684765 0.007830792 

 

0.087406402 5.000000000 4.110000000 

N=500    

 
0.031824993 0.026969259 0.19573333 

MSE 0.000177517 0.000893379 0.04707668 

 
0.059326323 7.980000000 7.00000000 

N=800    

 
0.0293744686 0.028605673 0.348000 

MSE 0.0009357992 0.001203129 0.147316 

 
0.0492388616 10.900000000 10.860000 

 

Table (5.2) represent the value of  MSE and for our model using Direct, Bootstrap and 

Double Bootstrap methods. When 100 replications, it is obvious that the Bootstrap method is 

better than other methods when the sample size is 50,100,150,200 while the direct method is 

better when the sample size is greater than or equal to 250.  

 

6: Real data 

In this section we will apply our methods to a set of real data represented by the daily Iraqi 

financial market dataset ( ISX ) for the dinar for the period 1/1/2017 - 1/1/2020.The data was 

obtained from (Homepage  www.isx.iq.net). We used the daily returns for the mentioned period 

as follows: 

rS =                  (4-1) 

where  

rS: represent daily returns at time t. 

St: exchange rate at time t. 

4.2. Kolmgorov-Smirnov test 

We use this test to see if the data follows a normal distribution or not. The null hypothesis of the 

test states that the data have a normal distribution. The p-value of the test is (2.2e-16) at the 

significant level of (5%). Therefore, the null hypothesis was rejected, which means that the data 

do not follow a normal distribution. 

4.3. Barndorff-Nielsen and Shephard jump test 

In order to check for jumps in the data, we use the Barndorff-Nielsen and Shephard jump test. 

The null hypothesis of this test states that there are no jumps. At the significant level (5%), the 

test value is (1.3239) and the p-value is (0.09276)for the data. As for the returns, it was the test 

value is (-0.34325) and the p-value is (0.6343). Therefore, we will accept the null hypothesis, 

which means that there are no jumps, whether the test is for data or returns. 

http://www.isx.iq.net/
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The comparison between the studied methods was done by calculating the MSE of the data, 

where the tail index of the studied methods was compared with the tail index of the Hill 

estimator. We used N=897,  and  . 

 

 
Figure 6.1: the real data through time. 

 

Figure (6.1) represent the real data (ISX) during 2017-2020. It is clear that the behavior of our 

index follows the Stochastic Differential Equation.  

After analyzing the data using R- program, we obtained some results presented in the following 

table.  

 

Table 6.1:  MSE and for five samples. 

N=898 Direct Bootstrap Double Bootstrap 

 
0.006878175 0.0017532978           0.02000000                  

MSE 0.000111708 0.0002463041           0.000006515888                   

 
5.832650928 4.0000000000           2.00000000                  

 



International Journal of Aquatic Science  

ISSN: 2008-8019 

Vol 13, Issue 01, 2022  

 

 

120 
 

Table 6.1:  represent the value of  MSE and for real data using Direct, Bootstrap and 

Double Bootstrap methods. it is obvious that the Double Bootstrap method is better than other 

methods when the sample size is N= 898.  

 

7. CONCLUSION 

 

In the simulation in first model, represented by SDE driven by G.B.M. the Bootstrap method was 

the best for all sample sizes.  for second model, represented by SDE driven by Levy process the 

Bootstrap method was also best when the sample size was less than 250. while for large values, 

the Direct method outperformed the others. 

In the real data, the Double Bootstrap method was the best, and there is a very clear convergence 

in the results of the other methods.   
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