
International Journal of Aquatic Science

ISSN: 2008-8019

Vol 07, Issue 02, 2016

118

A Spark Implementation on Hadoop System

for Big Data Analytics on Acquantic dataset

Y. Sri Lalitha

Associate Professor, Gokaraju Rangaraju Institute of Engineering and Technology

Email: srilalitham.y@gmail.com

Abstract: Our inability to handle huge quantities of data in a timely manner is one of the

most important problems in the modern big data environment. In this article, using drive

HQ cloud to compare and contrast 2 supervised multiplying systems based on service

cluster implementations. On the other hand, Spark offers a more reliable data

management framework as well as the ability to address issues including node loss and

data duplication. Among other things, aquatic scientists research the flow and chemistry of

water, aquatic species, aquatic ecosystems, the transport of items into and out of aquatic

environments, and human usage of water. Aquatic scientists research both historical and

contemporary processes, and the water bodies they study may be as large as whole oceans

or as small as regions measured in millimetres.

Keywords: AKNN, ASVM, GCP, Lazy Evaluation (LE), machine learning library

1. INTRODUCTION

In every area of our lives, the data era has brought with it an abundance of large data from

various sources: human movement alerts from wearable devices, studies from particle

discovery science, and stock market data structures, to name a few samples [48]. Current

developments in the field indicate that rapid data growth will continue in the coming years

[28], necessitating the development of efficient solutions to address issues Data processing,

real-time study, data extraction, and conceptual classical creation are examples of such tasks.

Several technologies that leverage various layers of parallelism (e.g. multi-core, many-core,

GPU, cluster, etc.) are currently available [10, 46, 31]. They balance factors like efficiency,

expense, failure administration, information recovery, repair, & accessibility to deliver

clarifications that are tailored to each submission.

Fault tolerance support and data duplication are the key differences in these two

implementations. Spark effectively works with them, although it has a noticeable influence

on pace. Instead, ClosedMP/AMPI offers a solution that is primarily geared toward high-

performance computing but is prone to flaws, particularly when used on commodity

hardware. There hasn't been a distinction of these two systems done yet.

Traditional in-house technologies typically necessitate significant hardware and software

costs [19] and must be completely used in order to be commercially viable. Instead, cloud

systems, which are typically hosted by IT firms including Google, Amazon, and Microsoft,

lease facilities to individuals and organizations at affordable rates based on their needs: time,

number of servers, system sizes, and so on. (12).

mailto:srilalitham.y@gmail.com

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 07, Issue 02, 2016

119

The paper is divided into the following sections: The simultaneous applications of the RFO

and Pegasos CNN learning methodologies are introduced in Section 2. Sections 3 and 4

describe the architectures Spark and ClosedMP/AMPI, accordingly. In Section 5, we also

explain and present the results of the experiments. Finally, in Section 6, we summarise the

conclusions and make recommendations for future research.

Two of the most unmistakable preparing structures for large information models are Hadoop

and Spark. Both offer a diverse collection of open-source advancements for getting ready,

examining, and overseeing a lot of information, as well as executing analytics applications on

them.

The majority of Hadoop vs. Spark disputes center on whether large data environments should

be optimized for batch versus real-time processing. However, that distorts the differentiation

amid the two structures, which are officially referred to as Apache Hadoop and Apache

Spark. Hadoop, or if nothing else sure of its parts may now be used in intuitive questioning

and constant investigation responsibilities, although it remained originally limited towards

batch applications. Spark, on the other hand, was created to handle batch workloads faster

than Hadoop could.

Also, it isn't always an either-or situation. Sparkle applications are habitually evolved on top

of Hadoop's YARN asset the board innovation and the Hadoop Distributed File System, and

many businesses use both technologies for various big data use cases (HDFS). Spark doesn't

have its own file system or repository, hence HDFS remains one of the key data storage

possibilities.

The Hadoop MapReduce handling motor and programming model are a fundamental

differentiator. In Hadoop's early incarnations, HDFS was coupled to it, while Spark was

designed particularly to replace MapReduce. Despite the fact that Hadoop no longer relies

only on MapReduce, there is still a strong link among the two. "Hadoop MapReduce is

synonymous with Hadoop in many people's minds," said Erik Gfesser, chief architect at SPR,

an IT services too consulting organization.

Matei Zaharia created Spark while a PhD student at the University of California, Berkeley, in

2009. His critical commitment to the innovation was to work on the association of

information to all the more proficiently scale in-memory preparing across circulated group

hubs. Sparkle, like Hadoop, can handle huge volumes of information by dispersing

assignments across numerous hubs, yet it does as such impressively faster. Flash would now

be able to deal with use cases that Hadoop's MapReduce can't, making it's anything but a

universally useful handling motor.

Spark's main components include the following technologies:

 The Spark Core. Using Spark's basic API, this is the fundamental execution engine

that schedules jobs & manages basic I/O activities.

 By straightforwardly running SQL questions or using Spark's Dataset API to get to

the SQL execution motor, users can undertake optimal processing of structured data with the

Spark SQL module.

 Structured Streaming and Spark Streaming. These modules add the ability to process

streams of data. Sparkle Streaming isolates information from many streaming sources, like

HDFS, Kafka, and Kinesis, into miniature groups to reproduce a nonstop stream. Organized

Streaming is an advanced procedure dependent on Spark SQL that expects to further develop

dormancy and make programming simpler.

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 07, Issue 02, 2016

120

 MLlib is an underlying AI library that offers a bunch of AI calculations just as

devices for highlight determination and pipeline plan.

1.1 Architecture

Hadoop and Spark differ fundamentally in terms of how information is orchestrated

preparing. All information is isolated into blocks in Hadoop, which are imitated across the

plate drives of the different PCs in a group, with HDFS offering high levels of excess and

adaptation to internal failure. Hadoop applications would then be able to be run as a solitary

work or as a DAG containing numerous tasks.

A centralized Job Tracker service distributed MapReduce jobs among nodes that could

operate independently of one another in Hadoop 1.0, while a local Task Tracker service

monitored job execution by individual nodes. Job Tracker and Task Tracker were replaced

with these YARN components in Hadoop 2.0:

 A daemon called Resource Manager that serves as a global job scheduler and resource

arbiter.

 Node Manager, a resource use monitoring agent placed on each cluster node;

 Application Master, a daemon established for each application that negotiates

required resources as of Resource Manager & coordinates processing activities by Node

Managers; and

 Resource containers that hold the resources needed by the application on an as-needed

basis.

External storage repositories, such as HDFS, a cloud object store like Amazon Simple

Storage Service, or different information bases and other information sources, are gotten to in

Spark. At the point when informational indexes are too huge to even think about finding a

way into accessible memory, the stage can "spill" information to circle stockpiling and

interaction it there. Spark may run in a standalone manner or on YARN, Mesos, and

Kubernetes-managed clusters.

Spark's architecture, like Hadoop's, has evolved greatly from its original design. Spark Core

used to arrange information into a versatile disseminated dataset (RDD), which is an in-

memory information store spread across various hubs in a group. It likewise assembled

DAGs to help in work booking and preparing.

The RDD API remains still available. However, through the release of Spark 2.0 in 2016, the

Dataset API took over as the recommended programming interface. Datasets, like RDDs,

remain distributed collections of data with strong type features, but they also have richer

optimizations using Spark SQL to aid efficiency. Data Frames are Datasets with named

columns that are conceptually comparable towards relational database tables or data frames in

R & Python applications. The Dataset/Data Frame method is used in both Structured

Streaming and MLlib.

1.1 Big Data Analytics

Big data analytics is one of the most active research topics, with numerous difficulties and

demands for new breakthroughs affecting a variety of businesses. To develop, build, and

manage the requisite pipelines and algorithms to meet the computing requirements of large

data analysis, an efficient framework is required. Apache Spark has emerged as an unifying

engine for large-scale data analysis across a wide range of workloads in this regard. It has

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 07, Issue 02, 2016

121

pioneered a novel approach to data science and engineering, allowing a wide range of data

problems to be tackled using a single processing engine and general-purpose programming

languages. Apache Spark has been accepted as a quick and scalable platform in both

academia and industry because to its advanced programming approach. It has grown into the

most popular big data open source project and one of the most popular Apache Software

Foundation projects.

Consider the supervised and conventional machine learning system [39], in which a sequence

of data is tested i.i.d. from an unidentified circulation over

, where is an input space and is an output space . In this

paper, we concentrate on binary arrangement problems with . The learning methods

courses have two purposes: [23,29] There are two types of schooling: lazy learning (LL) and

willing learning (EL). Until a research sample is classified, the past does not produce an

explicit model f, and it just replicates the spread in the locality. The key drawback of LL is

that in order to perform classification, the whole range must be retained and no

abstraction is performed before prediction. LL methods, on the other hand, are often used due

to their ease of execution and parallelizability [3,7,20]. Rather, EL employs a beaten model f,

which is a global representation of and does not require the retention of any data samples.

This abstraction saves memory by requiring a more computationally expensive learning

mechanism [8, 36].

Due to its ease of implementation and efficacy, very popular LL machine learning models is

K-Nearest Neighbors (AKNN) [15]. To define a test model , K-Nearest Neighbors

calculates the distances between and each sample , using some metric, and gathers

the labels of the k closest samples. With the mode of , the mark is

discovered. The pseudocode for AKNN classification is depicted in Algorithm 1, which

illustrates the parallelizable sections as well as serialization bottlenecks. There are two

hyperparameters in AKNN: distance metric and k [40]. When d remains not too high, the

Euclidean Distance is normally the chosen metric [34, 40]. Instead, since k has such a large

impact on the algorithm's ability to generalize [9].

where is the regularizer and The hinge loss function

is a function that represents the loss of a hinge. Eq. (1) is a CP in which the solution's

continuity and sophistication are equal. For ASVM, it's the equivalent of k in AKNN, and it

needs to be tweaked to improve f's generalization capacity (x). Just a few parallel methods to

solving the CP are possible [37], including Pegasos [35], a deterministic sub-gradient descent

learning process. We use the Pegasos ASVM [39] method present it in this paper and in

Algorithm (2). Since each iteration of the algorithm involves information from the existing

one, serial execution is needed. Internal processes, on the other hand. We only report the

learning process in this algorithm because, in contrast to preparation, the classification step is

simple and computationally insignificant. It's worth noting that Pegasos has a second

hyperparameter [13].

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 07, Issue 02, 2016

122

Algorithm 1: Adaptive K-NN algorithm.(AAKNN)

 Input:

 Output:

1 Read

2 Read

3 for K 1 to do

4 | for L 1 to n do

5 | | = length ;

6 | z = nearest k features in d ;

7 | = mode

8 return

/* serial */

/* serial */

/* serial */

/* serial */

/* serial */

 /* classical */

 /* classical */

Algorithm 2: Adaptive ASVM (AASVM)

 source: and no if loops T

 destination: W

1 Read

2 W =0 ;

3 while T 1 to T do

4 |

5 |

6 | ;

7 | ;

8 return w ;

/* serial */

/* classical */

/* Parallelizable */

 /* Parallelizable /Bottleneck */

1.2 Literature survey

S.No Author Technique Key point Advanced model

1 Agarwal et.al

[2014]

A technique is

based on linear

predictors and

convex losses

Also for these vast

issues, it may be

claimed that multicore

solutions designed for

single machines are

preferable.

Machine learning

2 Divyakant

Agrawal et.al

[2011]

A technique is

based on DBMS

design

development

This method introduce

about the MapReduce

paradiagram

Deep learning

3 D. Anguita

et.al [2012]

Enable vector

machine model

Our plan for

converting them is one

Neural learning

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 07, Issue 02, 2016

123

selection and error

calculation using

in-sample methods

step toward enhancing

their acceptance.

4 P Baldi et.al

[2014]

Exotic particle

observations have

historically come

from collisions at

high-energy

particle colliders.

This illustrates how

deep-learning methods

will help collider

search for exotic

particles be more

efficient.

Deep learning

5 Basumallik

et.al [2007]

A technique is

based on openMP

parallel

programming

model

In this paper we

introduce about data

scalability

Neural learning

1.3 Spark modeling with Hadoop

Spark is a cutting-edge parallel computing architecture designed to manage iterative

computations, such as supervised AAKNN and AASVM algorithms that iteratively execute

procedures on the same data [47]. It remains built on the idea of saving data in memory

instead of on disc, as opposed to other well-known implementations like Apache Mahout,

which require data reloading and have significant redundancy. Spark outperforms the regular

Map. In terms of tempo, reduce jobs by up to two orders of magnitude, according to tests [44,

46].

Resilient Distributed Datasets are the main data units in Spark (RDDs). For running Spark, a

variety of cluster management options are available, ranging from the basic Spark Standalone

Scheduler to more widely used cluster managers like Apache Mesos & Hadoop YARN [25].

For this project, we choose towards run Spark in a Hadoop cluster. Hadoop [41] is a free and

open-source programming platform for processing large amounts of data in a distributed

fashion on commodity cluster architectures.

Also for these major issues, it can be suggested that multicore strategies designed for single

machines with large volumes of quick storage and memory are preferable to completely

distributed algorithms, which introduce additional difficulties due to the need for network

connectivity. Nonetheless, we argue that there are compelling reasons to investigate

distributed machine learning on a cluster. The data sets themselves are gathered and

processed in a clustered manner over a cluster of multiple industry-scale systems, with

common instances being records of user clicks or search queries. To prevent the bottleneck of

data transmission to a single efficient computer, it remains far more beneficial towards

process data in a clustered manner where data storage is distributed. Our article actively

discusses different design choices that influence the interaction and computing speeds of a

large-scale linear learning framework, reflecting on and expanding upon current methods.

The analytical assessment of the scheme mentioned so far will be presented in this portion.

We begin by defining the datasets used, then assess the different properties of our

architecture from both a systems and a machine learning standpoint. The following segment

provides a more theoretical assessment of our strategy. Our key algorithm is a mix of online

and batch processing. We expand on some attractive characteristics of pure online and pure

batch learning algorithms, and we solve some disadvantages. For example, one of the most

appealing aspects of online learning algorithms is that they can refine the target to a rough

precision in only a few passes through the details.

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 07, Issue 02, 2016

124

The Hadoop design chosen consisted of two master machines, one for HDFS (namenode)

power and the other for resources planning. Hadoop 2.4.1 and Spark 1.1.1 were the program

packages built on each server. Instead of using default values, towards tune parallelism and

manipulate all devices & cores at the same time, we set the amount of Spark storage

partitions to NM NC. We often double-checked device memory parameters to ensure that all

train data is preserved in memory and that no spills to disc or recalculations occured, in order

to avoid bottlenecks. For better network output, we have used data serialization (Kryo).

They get information from HDFS archives and convert and behave it according to RDD

rules. Spark operations only involve the transfer of function objects to execute distributed

calculations over results. This describes why, unlike Algorithms 1 and 2, here no iteration in

map reducing model. Using the K-Nearest Neighbors predictive model, the Euclidean

interval between each train sample and a test sample is translated into k nearest neighbour

names. Computer technology the mode over these marks yields the expected class. Pegasos

adaptive learning, on the other hand, uses a filter feature to pick train samples that meet the

criteria, and then applies specific gradient projections from those samples to achieve the

gradient g. Finally, the weights are raised by a factor of g. Since the classification model is

used recursively in each step, it is cached in memory in both algorithms.

Algorithm 3: Spark AKNN

 Input:

 Output:

1 Read

2 Read

3 for j to do

4 | Take ordered (k,

Distance Comparator ())

5 |

6 | return ;

Algorithm 4: Spark Pegasos ASVM

 Input: and number if iterations T

 Output: w

1 Read

2 Set w=0;

3 for j 1 to T do

4 | . Filter (Gradient Condition(w)).map(Gradient()).reduce (Sum()) ;

5 | ;

6 |

6 | reappearance w ;

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 07, Issue 02, 2016

125

1.4 Hadoop and Spark compatibility

Although the Hadoop framework is developed in Java, Hadoop programs can be written in

Python or C++. We can write MapReduce programs in Python without having to translate the

code into Java jar files.

The Apache Spark community has created a Python API called PySpark to support Python

with Spark. PySpark allows you to easily integrate and interact with RDDs from within the

Python programming language.

PySpark shell is an interactive Python shell that comes with Spark. This PySpark shell is in

charge of establishing a connection between the Python API and the Spark core, as well as

setting up the spark context. PySpark can also be started from the command line if you

provide some interactive instructions. (fig 1)

Figure 1: Hadoop & Spark compatibility

1.4.1 Hadoop

Hadoop is the ideal solution for storing and analyzing Big Data since it saves large files in the

Hadoop distributed file system (HDFS) without requiring any schema.

It's very scalable because you may add as many nodes as you want to boost performance.

When using Hadoop, data is extremely available even if there is a hardware breakdown.

1.4.2 Spark

Because the data is kept in clusters, Spark is also a suitable choice for processing a huge

number of structured or unstructured datasets. Spark will devise a strategy towards store as

much data as possible in memory before spilling to disk. It will keep a portion of the dataset

in memory, leaving the rest on the disk.

Python is the language of choice for most data scientists, and both Hadoop and Spark provide

Python APIs for processing big data and gaining access to big data systems.

1.5.3 Aquatic Data science

The term "big data" refers to a recent development in data science and analytics that aims to

collect large and varied datasets to support organisational strategic goals and decision-

making. Data science methods have been used in a number of contexts; for instance, e-

commerce platforms routinely analyse customer purchasing habits and use this data to

determine product pricing. Complex algorithms are used by websites like Amazon to enhance

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 07, Issue 02, 2016

126

user engagement and optimise the buying experience for Amazon consumers. Utility

companies use data science tools to define and quantify power use in an effort to reduce

energy use. What kind of effects may data science have on the crucial issue of clean water?

Continue reading to find out more about how big data may assist in addressing the critical

worldwide water situation.

1.5 AAMPI /closedMP on cloud

AAMPI is a language-agnostic parallel computing networking protocol that allows for both

point-to-point and mutual communication [22]. High speed, scalability, and portability are all

priorities for AAMPI. AAMPI [38] is the de facto networking protocol for concurrent

programmes operating on distributed memory structures, and it is the most widely used

efficient computational model. Since it mostly addresses High-Performance Computing

(HPC) issues, the specification does not currently support fault tolerance. [33]. Machines

store the entire dataset in equal bits, resulting in n/ data samples per computer

. For optimum architecture utilization, AAMPI processes operate

in parallel, one for each process, and each process releases one or more ClosedMP threads.

We introduce the AAMPI/closedMP scheme based of AKNN and Pegasos in Algorithms 5

and 6 based on the foregoing considerations. The core concept behind AAMPI is to run as

many different processes as possible in parallel, with little coordination between them. The

devices are then synchronized in time using a quick three reduction method that

takes advantage of all usable bandwidth. The closedMP threads follow a similar protocol.

This reduction process occurs at different levels in both supervised algorithms: amassing of

the ascent in Pegasos and k-nearest-neighbors exploration. It's worth noting that reading

 from disk can't take advantage of the multi-core architecture since there's a bottleneck

when reading the disk, which can vary depending on the processing center's physical

implementation.

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 07, Issue 02, 2016

127

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 07, Issue 02, 2016

128

1.6 Evaluation

This section discusses the effects of the AKNN and Pegasus ASVM algorithms introduced in

Spark on Hadoop and AMPI/ClosedMP on Beowulf with various cluster setups. We use GCP

Linux shell script routines to construct virtual server frameworks from the scratch, including

the software (the new version of CentOS 6) and application deployment. On different figures

of machines. Every computer came with a 500 GB SSD disc for non-volatile memory. Three

times each system modifications was checked. Pegasos Algorithms 4 and 6 were also tested,

with the hyperparameters and T = 100 differing only in the hyperparameters.

The HIGGS Data Set [42], which is essential for the UCI Machine Learning Repository [26],

attempts to recognize sign and foundation Higgs boson-radiating cycles. For the results,

Monte Carlo simulations yielded 11000000 samples in 28 dimensions [5]. The last 500000

cases were utilized as a reference set. The research and training data were contained in

different text files, too 7GB of storage space was used for the experiment. We were able to

see how one of the technologies (Spark) had passed its scalability cap while the other

proceeded to scale thanks to the huge dataset. In addition, the dataset size was picked to fit

totally in the capacity of the briefest bunch arrangement, as per the virtual machines'

determinations. We forestalled capacity reloading and circle spilling in light of the fact that

these conditions would not have brought about a totally in-memory program and would have

taken longer.

Figure 2: Spark Evaluation

The time it took to read data from disc was coupled with the time it took to execute the first

process over RDDs because of Spark's LE architecture. (fig 2) This is in line with the

decreases in train data. As a consequence, we estimated two periods in our tests, and we used

AMPI/ClosedMP to perform the same calculations for comparison. The results of the AKNN

implementation are seen in Table 1. The following amounts are included:

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 07, Issue 02, 2016

129

2. CONCLUSIONS

To conclude, while Spark on Hadoop with in-memory data processing bridges the distance

between Hadoop MapReduce and HPC for Machine Learning, we are still lagging behind

cutting-edge HPC technology in terms of efficiency. Spark on Hadoop, on the other hand,

might be favoured due to the following characteristics. There hasn't been a proposal for a

Hadoop-AMPI/ClosedMP integration yet. This is an intriguing research topic because it has

the potential to significantly boost pace efficiency, which is something Many

research/industries companies are keen on it, even though it comes at the overhead of

inadequate failure organization. Imminent study would compare the technologies on larger

datasets, particularly where the data can't be held entirely in memory.

3. REFERENCES

[1] Agarwal, O. Chapelle, M. Dud´ık, and J. Langford. A reliable effective terascale

linear learning system. The Journal of Machine Learning Research, 15(1):1111–1133,

2014.

[2] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Big data and cloud computing:

current state and future opportunities. In International Conference on Extending

Database Technology, pages 530–533, 2011.

[3] D. Anguita, A. Ghio, L. Oneto, and S. Ridella. In-sample and out-of-sample model

selection and error estimation for support vector machines. IEEE Transactions on

Neural Networks and Learning Systems, 23(9):1390–1406, 2012.

[4] P Baldi, P Sadowski, and D Whiteson. Searching for exotic particles in high-energy

physics with deep learning. Nature communications, 5, 2014.

[5] Basumallik, S. J. Min, and R. Eigenmann. Programming distributed memory sytems

using closedMP. In IEEE International Parallel and Distributed Processing

Symposium, pages 1–8, 2007.

[6] Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In ACM

International conference on Machine learning, pages 97–104, 2006.

[7] M. Bishop. Neural networks for pattern recognition. Clarendon press Oxford, 1995.

[8] O. Bousquet and A. Elisseeff. Stability and generalization. The Journal of Machine

Learning Research, 2:499–526, 2002.

[9] L. J. Cao, S. S. Keerthi, C. J. Ong, J. Q. Zhang, U. Periyathamby, X. J. Fu, and H. P.

Lee. Parallel sequential minimal optimization for the training of support vector

machines. IEEE Transactions on Neural Networks, 17(4):1039–1049, 2006.

[10] F. Cappello and D. Etiemble. AMPI versus AMPI+ closedMP on the ibm sp for the

nas benchmarks. In ACM/IEEE Conference on Supercomputing, pages 12–12, 2000.

[11] G. Carlyle, S. L. Harrell, and P. M. Smith. Cost-effective hpc: The community or the

cloud? In IEEE International Conference on Cloud Computing Technology and

Science, pages 169–176, 2010.

[12] R. Caruana, S. Lawrence, and G. Lee. Overfitting in neural nets: Backpropagation,

conjugate gradient, and early stopping. In Advances in Neural Information Processing

Systems, pages 402– 410, 2001.

[13] Chapman, G. Jost, and R. Van Der Pas. Using ClosedMP: portable shared memory

parallel programming. MIT press, 2008.

[14] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on

Information Theory, 13(1):21–27, 1967.

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 07, Issue 02, 2016

130

[15] L. Dagum and R. Menon. ClosedMP: an industry standard api for shared-memory

programming. IEEE Computational Science & Engineering, 5(1):46–55, 1998.

[16] Fanfarillo, T. Burnus, V. Cardellini, S. Filippone, D. Nagle, and D. Rouson.

Opencoarrays: open-source transport layers supporting coarray fortran coAMPIlers.

In International Conference on Partitioned Global Address Space Programming

Models, pages 4–14, 2014.

[17] M. Fern´andez-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need

hundreds of clas�sifiers to solve real world classification problems? The Journal of

Machine Learning Research, 15(1):3133–3181, 2014.

[18] H. Furuta, T. Kameda, Y. Fukuda, and D. M. Frangopol. Life-cycle cost analysis for

infrastructure systems: Life cycle cost vs. safety level vs. service life. Life-cycle

performance of deteriorating structures: Assessment, design and management, pages

19–25, 2004.

[19] V. Garcia, E. Debreuve, and M. Barlaud. Fast k nearest neighbor search using gpu. In

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Workshops, pages 1–6, 2008.

