R - Number Of Some Families Of Graphs

S. Vimalajenifer ${ }^{1}$, Selvam Avadayappan ${ }^{2}$, M. Bhuvaneshwari ${ }^{3}$
${ }^{1}$ Research Department of Mathematics, VHN Senthikumara Nadar College (A)
Virudhunagar - 626001, India.
${ }^{2}$ Research Department of Mathematics, VHN Senthikumara Nadar College (A)
Virudhunagar - 626001, India.
${ }^{3}$ Research Department of Mathematics, VHN Senthikumara Nadar College (A)
Virudhunagar - 626001, India.
Email: ${ }^{1}$ vimalajenima430@gmail.com, ${ }^{2}$ selvam_avadayappan@yahoo.co.in,
${ }^{3}$ bhuvaneshwari@vhnsnc.edu.in

Abstract

Let $\boldsymbol{G}(\boldsymbol{V}(\boldsymbol{G}), E(G))$ be a simple connected graph. An injective functionf: $\boldsymbol{V}(\boldsymbol{G})$ $\rightarrow\{1,2,3, \ldots\}$ is said to be an R-labeling if it satisfies the following conditions: $\backslash \boldsymbol{f}(u)-\boldsymbol{f}$ (v) $\mid \geq 2$, if $d(u, v)=1 ;|f(u)-f(v)| \geq 1$, if $d(u, v)=2$, for any two distinct vertices $u, v \in V$ (G). The span of an R-labeling, f, is the largest integer in the range of f and is denotedby f_{R}. The $R-$ number, $R(G)$ or R of G is the minimum span taken overall R labelings of G. In this paper, we determine the R - number of some families of graphs.

Keywords - R-number, span, λ-number.

1. INTRODUCTION

In this paper, we consider only simple, connected, undirected and finite graphs. For basic notations and terminology, we follow [6]. Let $G=(V, E)$ be a simple connected graph. The distance $d(u, v)$ between u and v, is the length of a shortest $(u, v)-$ path in G. For any vertex $u \in V$, the eccentricity, $e(u)$, of u is the distance of a vertex farthest from u. The radius of a graph G is the minimum eccentricity among all the vertices and is denoted by $\operatorname{rad}(G)$. The diameter of G is the maximum eccentricity among all the vertices and is denoted by $\operatorname{diam}(G)$.

For a subset S of V, let $\langle S\rangle$ denote the induced subgraph of G induced by S. By a clique C we mean a maximal subset of V such that $\langle C\rangle$ is complete. The clique number of a graph G, denoted by ω, is the number of vertices in a clique of maximum order in G. The concept of splitting graph was introduced by Sampath Kumar and Walikar[10]. The splitting graph of G is obtained by adding a new vertex w for every vertex $v \in V$ and joining w to all vertices of G adjacent to v and is denoted by $S(G)$. The cosplitting graph [1], $C S(G)$ is obtained from G, by adding a new vertex w for each vertex v and joining w to all vertices which are not adjacent to v in G. The distance between the vertices in splitting and cosplitting graphs has been discussed in [2].

In 1960's Rosa[9] introduced the concept of graph labeling. A graph labeling is an assignment of number to the vertices or edges or both, satisfying some constraint. Rosa named the labeling introduced by him as β-valuation and later on it becomes a very famous interesting graph labeling called graceful labeling, which is the origin for any graph
labeling problem. Motivated by real life problems, many mathematicians introduced various labeling concepts[7]. Here, we see one of the familiar graph labelings in graph theory.

Let $G(V(G), E(G)$) be a graph. A radial radio labeling, f, of a connected graph G is an assignment of positive integers to the vertices satisfying the following condition: $d(u, v)+|f(u)-f(v)| \geq 1+r$, for any two distinct vertices $u, v \in V(G)$, where $d(u, v)$ and r denote the distance between the vertices u and v and the radius of the graph G, respectively. The span of a radial radio labeling f is the largest integer in the range of f and is denoted by span f. The radial radio number of $G, \operatorname{rr}(G)$, is the minimum span taken over all radial radio labelings of G.

For example, a graph G and its radial radio labeling are shown in Figure 1.1.

Figure 1.1
Here, $\operatorname{rad}(G)=2$ and $\operatorname{rr}(G)=6$.
The radial radio number of any simple connected graph has been studied in [3], [4], [5] and [11].

Given a simple conneced graph $G(\mathrm{~V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$, an $L(2,1)$ - labeling of G is a function $f: V(G) \rightarrow\{0,1,2,3, \ldots\}$ such that $|f(u)-f(v)| \geq 2$, if $d(u, v)=1$ and $|f(u)-f(v)| \geq 1$, if $d(u, v)$ $=2$. The $L(2,1)-$ labeling number $\lambda(G)$ is the smallest k such that G has an $L(2,1)-$ labeling with $\max \{f(v): v \in V(G)\}=k$. Inspired by the concept of distance 2 labeing introduced by Griggs [8], we introduce a new concept called R-labeling which is defined as follows:

An injective function $f: V(G) \rightarrow\{1,2,3, \ldots\}$ is said to be an R-labeling if it satisfies the following conditions for any two distinct vertices $u, v \in V(G)$:

$$
\begin{aligned}
& |f(u)-f(v)| \geq 2 \text {, if } d(u, v)=1 \\
& |\boldsymbol{f}(u)-\boldsymbol{f}(v)| \geq 1 \text {, if } d(u, v)=2
\end{aligned}
$$

The span of an R -labeling, f, is the largest integer in the range of f and is denoted by f_{R}. The R - number $R(G)$ of G is the minimum span taken overall R - labelings of G. That is, $R(G)=\min _{f} f_{R}$, where the minimum runs over all $R-$ labelings of G.

For example, consider the graph G. One of the R - labelings of G is shown in Figure 1.2.

G

Figure 1.2
The relationship between the radial radio number and the R - number of any given simple graph has been established in [12].

Let G_{1} and G_{2} be any two graphs. The join of two graphs G_{1} and G_{2} is the graph whose vertex set is $V_{1} \cup V_{2}$ and the edge set is $E_{1} \cup E_{2} \cup\left\{u v: u \in V_{1}, v \in V_{2}\right\}$ and is denoted by $G_{1}+G_{2}$. The union of two graphs G_{1} and G_{2} is the graph whose vertex set is $V_{1} \cup V_{2}$ and the edge set is $E_{1} \cup E_{2}$ and is denoted by $G_{1} \cup G_{2}$.

Let $H_{n, n}$ be the graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n} ; u_{1}, u_{2}, \ldots ., u_{n}\right\}$ and the edge set $\left\{v_{i} u_{j}: 1 \leq i \leq n, n-i+1 \leq j \leq n\right\}$.

The ladder graph $P_{n} \times K_{2}$ is denoted by L_{n}, where $V\left(L_{n}\right)=\left\{v_{i}, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(L_{n}\right)=\left\{v_{i} v_{i+1}, u_{i} u_{i+1}: 1 \leq i \leq n\right\} \cup \quad\left\{v_{i} u_{i}: 1 \leq i \leq n\right\}$

For further details on R - number, one can refer [13] and [14].
I. Some Basic Results

Throughout this section, assume that G is a non trivial simple connected graph on n vertices.
Now, we present some basic traits of R - number.
We note that, since the corresponding R-labeling is one to one, no two vertices can get the same label. This forces that, $R(G) \geq n$, for any graph G of order n. Also, this bound is sharp for $\mathrm{P}_{\mathrm{n}}, \mathrm{n} \geq 4$ and $\mathrm{C}_{\mathrm{n}}, \mathrm{n} \geq 5$.
We prove these two results later in this section.
Fact 2.1. If ω is the clique number of G, then $R(G) \geq 2 \omega-1$.
For, we have, the label difference between adjacent vertices is at least 2 . To label the vertices of K_{ω}, we definitely need the labels $1,3, \ldots, 2 \omega-1$. Thus $R(G) \geq 2 \omega-1$.
Remark 2.2. The bound in Fact 2.1 is sharp for the graph shown in Figure 2.1.

Figure 2.1

Here, $\omega=3$ and $R(G)=5$.
Fact 2.3. For any graph G of order n, $n \leq R(G) \leq 2 n-1$.

For, the lower bound for $R(G)$ is trivial. Also, if G has n vertices, then by assigning the labels $1,3, \ldots, 2 n-1$ to the vertices of G, we get an R - labeling of G. This assures that upper bound for $R(G)$ to be $2 n-1$.

The upper bound attained in Fact 2.3 is sharp for the complete graphs K_{n}, where $n \geq$ 3.

In fact K_{n} is the only graph for which the R - number is $2 n-1$. We prove this in the following theorem.
Theorem 2.4. Let G be any graph of order n. Then $R(G)=2 n-1$ if and only if $G \cong K_{n}$. Proof
Suppose $G \cong K_{n}$.
Let $V(G)=\left\{v_{i}: 1 \leq i \leq n\right\}$. Then define $f: V(G) \rightarrow\{1,2,3, .$.$\} such that f\left(v_{i}\right)=2 i-1,1$ $\leq i \leq n$. Since $d\left(v_{i}, v_{j}\right)=1$, for all $1 \leq i \neq \boldsymbol{j} \leq n$, we have $\left|\boldsymbol{f}\left(v_{i}\right)-\boldsymbol{f}\left(v_{j}\right)\right| \geq 2$. This forces that, \boldsymbol{f} is an R - labeling for G and $f_{R}=2 n-1$ Thus $R(G) \leq 2 n-1$. But the clique number ω of G is n. Therefore, Fact 2.1 implies that, $R(G) \geq 2 n-1$. Hence $R(G)=2 n-1$.

Conversely, assume that, $R(G)=2 n-1$. To show that, $G \cong K_{n}$. On contrary, assume that, G is not isomorphic to K_{n}. Then the clique number of $G, \omega \leq n-1$. If $\omega=n-1$, then for any $R-$ labeling f of G, we have $f_{R}=\max _{v \in V(G)} f(v) \leq 2(\omega-1)+1<2 n-1$. This forces that, $R(G)<2 n-1$, which is a contradiction. Hence G must be isomorphic to K_{n}.
Fact 2.5. If H is a subgraph of G, then $R(H) \leq R(G)$.
For, let f be an R - labeling of G. Then the restricted function $\left.f\right|_{V(H)}$ is an $R-$ labeling of H. This implies that, $R(H) \leq R(G)$.

Now, we turn our attention to find the R - number of paths. One can easily, check that, $R\left(P_{2}\right)=3, R\left(P_{3}\right)=4$. For, $n \geq 4$, we determine $R\left(P_{n}\right)$ in the following Theorem.
Theorem 2.6. For $n \geq 4, R\left(P_{n}\right)=n$.

Proof

Let $V\left(P_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\}$ and let $E\left(P_{n}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. From Fact 2.3, we get $R\left(P_{n}\right)$ $\geq n$, for $n \geq 4$. Now, we will show that, for $n \geq 4, R\left(P_{n}\right) \leq 4$.
Case 1 Let $n=2 m, m \geq 3$, be an even integer
Inthis case, define $f: V\left(P_{n}\right) \rightarrow\{1,2,3, .$.$\} suchthat f\left(v_{2 i-1}\right)=i, 1 \leq i \leq m ; f\left(v_{2 i}\right)=m+i, 1 \leq i$ $\leq m$. Here, for the adjacent pair of vertices $\left(v_{2 i-1}, v_{2 i}\right), 1 \leq i \leq m$, we have $\left|\boldsymbol{f}\left(v_{2 i-1}\right)-\boldsymbol{f}\left(v_{2 i}\right)\right| \geq$ $m>2$. Also, for the pair $\left(v_{i}, v_{j}\right), 1 \leq i \neq j \leq n$ with $d\left(v_{i}, v_{j}\right)=2$, we have $\left|\boldsymbol{f}\left(v_{2 i-1}\right)-\boldsymbol{f}\left(v_{2 i}\right)\right|$ ≥ 1. Thus \boldsymbol{f} is an R - labeling of $P_{2 m}$, where $m \geq 3$. This implies that, $f_{R}=2 m$ and hence $R\left(P_{2 m}\right) \leq 2 m$.
Case 2 Let $n=2 m+1, m \geq 2$, be an odd integer
Define $f: V\left(P_{n}\right) \rightarrow\{1,2,3, .$.$\} such that f\left(v_{2 i-1}\right)=i, 1 \leq i \leq m+1 ; f\left(v_{2 i}\right)=m+i+1,1$ $\leq i \leq m$. Proceed as in Case 1, we can prove that f is an R-labeling for $P_{2 m+1}, m \geq 2$. This gives that, $f_{R}=2 m+1=n$. Hence $R\left(P_{2 m+1}\right) \leq 2 m+1$. This completes the proof. The $R-$ labelings of the paths P_{10} and P_{11} are presented in Figure 2.2.

Figure 2.2
Next, we focus on cycles. We can easily verify that, $R\left(C_{3}\right)=5$ and $R\left(C_{4}\right)=5$.
Now, for $n \geq 5$, we estimate $R\left(C_{n}\right)$ in the following Theorem.
Theorem 2.7. For $n \geq 5, R\left(C_{n}\right)=n$.

Proof

Let $V\left(C_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\}$ and let $E\left(C_{n}\right)=\left\{v_{1} v_{n}, v_{i} v_{i+1}\right\}$.
By Fact 2.3, we have $R\left(C_{n}\right) \geq n$, for $n \geq 5$. It is enough to show that, $R\left(C_{n}\right) \leq n$, for $n \geq 5$.
Case 1 Let $n=2 m, m \geq 3$ be an even integer.
Here, define $f: V\left(\mathrm{C}_{n}\right) \rightarrow\{1,2,3, .$.$\} such that f\left(v_{2 i-1}\right)=i, 1 \leq i \leq m ; f\left(v_{2 i}\right)=m+i, 1 \leq$ $i \leq m$. Since $\boldsymbol{f}\left(v_{i}\right) \neq \boldsymbol{f}\left(v_{j}\right)$, for every $i, j, 1 \leq i \leq j \leq n, f$ is one to one. We observe that $\backslash \boldsymbol{f}\left(v_{i}\right)$ $-\boldsymbol{f}\left(v_{j}\right) \mid \geq 2$, if $d\left(v_{i}, v_{j}\right)=1$ and $\left|\boldsymbol{f}\left(v_{i}\right)-\boldsymbol{f}\left(v_{j}\right)\right| \geq 1$, if $d\left(v_{i}, v_{j}\right) \geq 2$. This forces that, \boldsymbol{f} is an R - labeling of C_{n} and $f_{R}=2 m$ and thus $R\left(C_{n}\right) \leq 2 m$.
Case 2 Let $n=2 m+1, m \geq 2$, be an odd integer.
If we define $f: V\left(P_{n}\right) \rightarrow\{1,2,3, .$.$\} such that$
$f\left(v_{2 i-1}\right)=i, 1 \leq i \leq m+1 ; f\left(v_{2 i}\right)=m+i+1,1 \leq i \leq m$, then as in Case 1 , we can prove that, f is an R - labeling of C_{n} and $f_{R}=2 m+1$. Thus $R\left(C_{n}\right) \leq 2 m+1$. This completes the proof. The R - labelings of the cycles C_{9} and C_{10} are given in Figure 2.3.

Figure 2.3
Theorem 2.8. For $n \geq 2, R\left(H_{n, n}\right)=2 n$.

Proof

Let $V\left(H_{n, n}\right)=\left\{v_{i}, \quad u_{j}: 1 \leq i, j \leq n\right\}$. By Fact 2.3, we have $R\left(H_{n, n}\right) \geq 2 n$. It is enough to show that, $R\left(H_{n, n}\right) \leq 2 n$.

Define $f: V\left(P_{n}\right) \rightarrow\{1,2,3, .$.$\} such that f\left(v_{i}\right)=i, 1 \leq i \leq n ; f\left(u_{j}\right)=n+j, 1 \leq j \leq n$. Here, we observe the following:

$$
\begin{aligned}
& \left|\boldsymbol{f}\left(v_{i}\right)-\boldsymbol{f}\left(v_{j}\right)\right| \geq 1, \text { for every } i, j, 1 \leq i \neq j \leq n \\
& \left|\boldsymbol{f}\left(u_{i}\right)-\boldsymbol{f}\left(u_{j}\right)\right| \geq 1, \text { for every } i, j, 1 \leq i \neq j \leq n
\end{aligned}
$$

$$
\left|\boldsymbol{f}\left(v_{i}\right)-\boldsymbol{f}\left(u_{j}\right)\right| \geq 2, \text { for every } i, \boldsymbol{j}, 1 \leq i, j \leq n .
$$

Thus f is an R - labeling of $H_{n, n}$ and $f_{R}=2 n$ and hence $R\left(H_{n, n}\right) \leq 2 n$. This completes the proof. An $R-$ labeling of $H_{5,5}$ is given in Figure 2.4.

Theorem 2.9. For $n \geq 3, \stackrel{6}{R}\left(L_{n}\right)=2 n$.

Proof

By Fact 2.3, we have $R\left(L_{n}\right) \geq 2 \mathrm{n}$. It is enough to show that, $R\left(L_{n}\right) \leq 2 \mathrm{n}$.
When $n=3$ or 4 , the R - labelings for the graphs L_{3} and L_{4} are shown in Figure 2.5 , from which,

we conclude that, $R\left(L_{3}\right) \leq 6$ and $R\left(L_{4}\right) \leq 8$.
Now, we assume that $n=2 m, m \geq 3$, is an even integer. Then we define $f: V\left(L_{n}\right) \rightarrow\{1$, $2,3, .$.$\} such that f\left(v_{2 i-1}\right)=i, 1 \leq i \leq m ; f\left(v_{2 i}\right)=m+i, 1 \leq i \leq m ; f\left(u_{i}\right)=f\left(v_{i}\right)+n, 1 \leq i \leq n$. It is obvious that, f is one - one. Here, we can see that,
$\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right| \geq 2$, if $d\left(v_{i}, v_{j}\right)=1$;
$\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right| \geq 1$, if $d\left(v_{i}, v_{j}\right)=2$;
$\left|f\left(u_{i}\right)-f\left(u_{j}\right)\right| \geq 2$, if $d\left(u_{i}, u_{j}\right)=1$;
$\left|f\left(u_{i}\right)-f\left(u_{j}\right)\right| \geq 1$, if $d\left(u_{i}, u_{j}\right)=2$;
$\left|f\left(v_{i}\right)-f\left(u_{j}\right)\right| \geq 2$, if $d\left(v_{i}, u_{j}\right)=1$;
$\left|f\left(v_{i}\right)-f\left(u_{j}\right)\right| \geq 1$, if $d\left(v_{i}, u_{j}\right)=2$, for all $i, j, 1 \leq i, j \leq n$. This gives that, f is an $R-$ labeling of L_{n}. Also, span $f=2 \mathrm{n}$ and hence $R\left(L_{n}\right) \leq 2 \mathrm{n}$.
Next, we consider the case when $n \geq 5$ is even. Take $n=2 m+1, m \geq 2$. In this case, we define $f: V\left(L_{n}\right) \rightarrow\{1,2,3, .$.$\} suchthat f\left(v_{2 i-1}\right)=i, 1 \leq i \leq m+1 ; f\left(v_{2 i}\right)=m+i+1,1 \leq i$ $\leq m ; f\left(u_{i}\right)=f\left(v_{i}\right)+n, 1 \leq i \leq n$. We can easily, check that f is an $R-$ labeling and $\operatorname{span} f=2 n$. Hence $R\left(L_{n}\right) \leq 2 \mathrm{n}$. This completes the proof.

II. R - NUMBER OF SOME SPECIAL DERIVED GRAPHS

Throughout this section, assume that G is a graph with n_{1} vertices and m_{1} edges and H is a graph with n_{2} vertices and m_{2} edges.
Theorem 3.1 Let $G_{1}, G_{2}, \ldots, G_{k}$ be simple connected graphs with R - numbers $R_{1}, R_{2}, \ldots, R_{k}$, respectively and let $\left|V\left(G_{i}\right)\right|=n_{i}$ Then $R\left(G_{1} \cup G_{2} \cup \ldots \cup G_{k}\right)=R_{1}+R_{2}+\ldots+R_{k}, k \geq 2$.

Proof

Since any R - labeling is one - one, we cannot reuse the label of any vertex in G_{i}, to a vertex in G_{j}, for all $i, j, 1 \leq i \neq j \leq k$. Hence $R\left(G_{1} \cup G_{2} \cup \ldots \cup G_{k}\right) \geq R_{1}+R_{2}+\ldots+R_{k}$. Also, since G_{1} is disjoint from G_{2}, the minimum possible labels for the vertices of G_{2} should be $R_{1}+1, R_{1}+2, \ldots, R_{1}+R_{2}$. Proceeding like this, we obtain $R\left(G_{1} \cup G_{2} \cup \ldots \cup G_{k}\right) \leq R_{1}+R_{2}+\ldots+R_{k}$. This completes the proof.
Theorem 3.2. $R(G+H)=R(G)+R(H)+1$.

Proof

Let $V(G)=\left\{v_{i}: 1 \leq i \leq n_{1}\right\}$ and let $V(H)=\left\{u_{i}: 1 \leq i \leq n_{2}\right\}$.
Then $V(G+H)=V(G) \cup V(H)$ and $E(G+H)=E(G) \cup E(H) \cup\left\{v_{i} u_{j}: 1 \leq i \leq n_{1}\right.$ and $1 \leq j \leq$ $\left.n_{2}\right\}$. Let f and g be $R(G)$ and $R(H)$ labelings of G and H, respectively. Then define $h: V$ $(G+H) \rightarrow\{1,2,3, \ldots\}$ such that $h\left(v_{i}\right)=f\left(v_{i}\right), 1 \leq i \leq n_{1}$ and $h\left(u_{j}\right)=g\left(u_{j}\right)+R(H)+1,1 \leq j \leq n_{2}$. Since $d_{G+H}\left(v_{i}, u_{j}\right)=1,1 \leq i \leq n_{1}$ and $1 \leq j \leq n_{2}$ and $\left|h\left(v_{i}\right)-h\left(u_{j}\right)\right|=\left|f\left(v_{i}\right)-\left(g\left(u_{j}\right)+R(H)+1\right)\right|$ $\geq R(H)+1>2, h$ is an R - labeling of $G+H$. Also, $h_{R}=R(G)+R(H)+1$. This implies that, $R(G+H) \leq R(G)+R(H)+1$. Suppose there exists an $R-$ labeling c of $G+H$ such that $R(G+H)=R(G)+R(H)$. Then we can find a pair $\left(v_{i}, u_{j}\right)$ such that $\left|c\left(v_{i}\right)-c\left(u_{j}\right)\right|=1$, which is a contradiction that c is an R - labeling. This forces that, $R(G+H) \geq R(G)+R(H)+1$. Hence $R(G+H)=R(G)+R(H)+1$.

From this result, we deduce the following:

Corollary 3.3

For $m \geq n \geq 1, R\left(K_{m, n}\right)=m+n+1$.
Theorem 3.4. For any graph G on $n \geq 3$ vertices, $R(S(G))=R(G)+n$.

Proof

Let f be an R - labeling of G and let $V(G)=\left\{v_{i}: 1 \leq i \leq n\right\}$ such that $f(v)=R(G)$. Then $V(S(G))=V(G) \cup\left\{v_{i}^{\prime}: 1 \leq i \leq n\right\}$ and $E(S(G))=E(G) \cup\left\{v_{i}^{\prime} u: u \in N_{G}\left(v_{i}\right)\right\}$. Now, define $g: V(S(G)) \rightarrow\{1,2,3, \ldots\}$ such that $g\left(v_{i}\right)=f\left(v_{i}\right), 1 \leq i \leq n ; g\left(v_{i}^{\prime}\right)=f\left(v_{i}\right)+$ $1,1 \leq i \leq n$. Here, we have $d_{S(G)}\left(v_{i}, v_{i}^{\prime}\right)=2$. Then $\left|g\left(v_{i}\right)-g\left(v_{i}^{\prime}\right)\right|=\left|\boldsymbol{f}\left(v_{i}\right)-\left(\boldsymbol{f}\left(v_{i}\right)+i\right)\right| \geq 1$ and $\left|g\left(v_{i}\right)-g\left(v_{i}^{\prime}\right)\right| \geq|i-j| \geq 1$. This forces that, g is an $R-$ labeling of $S(G)$ and $\max _{v \in V(S(G))} g(v)=$ $R(G)+n$ and hence $R(S(G)) \leq R(G)+n$. Since $d_{S(G)}\left(v_{i}, v_{i}{ }^{\prime}\right) \geq 2$, distinct n positive integers $R(G)+1, R(G)+2, \ldots, R(G)+n$ are enough to label the vertices of $V(S(G))-V(G)$. Hence $R(S(G)) \geq R(G)+n$.
This completes the proof.

Theorem 3.5. For any graph G on $n \geq 3$ vertices, $R(C S(G))=R(G)+n$.
 Proof

Let f be an R - labeling of G and let $V(G)=\left\{v_{i}: 1 \leq i \leq n\right\}$ such that $f\left(v_{1}\right)=R(G)$ and $v_{1} v_{2} \in E(G)$. Then $V(\mathrm{CS}(G))=V(G) \cup\left\{v_{i}^{\prime}: 1 \leq i \leq n\right\}$ and $E(\operatorname{CS}(G))=E(G) \cup$ $\left\{v_{i}^{\prime} u: u \notin N_{G}\left(v_{i}\right)\right\}$.
Define $h: V(C S(G)) \rightarrow\{1,2,3, \ldots\}$ such that $h\left(v_{i}\right)=f\left(v_{i}\right), 1 \leq i \leq n ; h\left(v_{1}{ }^{\prime}\right)=R(G)+2$; $h\left(v_{2}{ }^{\prime}\right)=R(G)+1 ; h\left(v_{i}{ }^{\prime}\right)=R(G)+3,3 \leq i \leq n$. Here, we have $\left|h\left(v_{1}\right)-h\left(v_{2}{ }^{\prime}\right)\right|=1$ and $\left|h\left(v_{i}{ }^{\prime}\right)-h\left(v_{j}{ }^{\prime}\right)\right| \geq 1$. Thus h is an R - labeling of $C S(G)$. Also, $h_{R}=R(G)+n$ and hence $R(C S(G)) \leq R(G)+n$. Since $d_{C S(G)}\left(v_{i}{ }^{\prime}, v_{j}{ }^{\prime}\right) \geq 2$, distinct n positive integers $R(G)+1$, $R(G)+2, \ldots, R(G)+n$ are enough to label the vertices of $\mathrm{V}(\mathrm{CS}(G))-V(G)$. Hence $R(C S(G)) \geq R(G)+n$. This completes the proof.
Acknowledgment
The first author thanks U. G. C., India for supporting her by Maulana Azad National Fellowship. (Grant no. F1-17.1/2015-16/MANF-2015-17-TAM-66646).

2. REFERENCES

[1]. Selvam Avadayappan, M. Bhuvaneshwari, Cosplitting and Coregular Graph, International Journal of Mathematics and Soft Computing, vol. 5, no. 1, 57 - 64, 2015.
[2]. Selvam Avadayappan, M. Bhuvaneshwari, Distance in Splitting and Cosplitting Graphs, International Journal of Engineering Sciences and Management Research, ISSN: $2349-6169$, vol. 2, no. 12, $50-54,2015$.
[3]. Selvam Avadayappan, M. Bhuvaneshwari, S. Vimalajenifer, A Note on Radial Radio Number of a Graph, International Journal of Applied and Advanced Scientific Research, ISSN: 2546 - 3080, 62 - 68, February 2017.
[4]. Selvam Avadayappan, M. Bhuvaneshwari, S. Vimalajenifer, Radial Radio Number of a Graph, Global Journal of Pure and Applied Mathematics, ISSN: 0973 - 1768, vol. 13, no. 5, 347 - 357, 2017.
[5]. Selvam Avadayappan, M. Bhuvaneshwari, S. Vimalajenifer, The Radial Radio Number and the Clique Number of a Graph, International Journal of Engineering and Advanced Technology, ISSN: 2249 - 8958, vol. 9, Issue IS4, 1002 - 1006, December 2019.
[6]. R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory, SpringerVerlag, New York, Inc(1999).
[7]. J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 2019.
[8]. J. R. Griggs, R. K. Yeh. "Labelling Graphs with a condition at Distance 2", SIAM J. Disc. Math, vol. 5, no. 4, 586 - 595, November 1992.
[9]. A. Rosa, "On certain valuations of the vertices of a graph", Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967) 349-355.
[10]. Sampath Kumar and H. B. Walikar, "On the Splitting Graph of a Graph", Karnatak Uni. Sci., 25:13, 1980.
[11]. S. Vimalajenifer, Selvam Avadayappan, M. Bhuvaneshwari, Radial Radio Number of Some Families of Graphs (Preprint).
[12]. S. Vimalajenifer, Selvam Avadayappan, M. Bhuvaneshwari, Relationship between $\mathbf{r r}(\mathbf{G})$ and $\mathbf{R}(\mathbf{G})$ (Preprint).
[13]. S. Vimalajenifer, Selvam Avadayappan, M. Bhuvaneshwari, R - number of Product Graphs (Preprint).
[14]. S. Vimalajenifer, Selvam Avadayappan, M. Bhuvaneshwari, R - number and other parameters (Preprint).

