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Abstract - Let G(V(G),E(G)) be a simple connected graph. An injective function f : V (G) 

→ {1, 2, 3, ...} is said to be  an  R-labeling if it satisfies the following conditions: |f (u) − f 

(v)| ≥ 2, if d(u, v) = 1 ;  |f (u) − f (v)| ≥ 1, if d(u, v) = 2, for  any two distinct vertices u, v ∈ V 

(G). The  span of  an  R−labeling,   f , is  the   largest  integer  in the  range of  f  and is 

denoted by fR. The R− number, R(G) or R of G is the minimum span taken over all  R− 

labelings of G. In this paper, we determine the R – number of some families of 

graphs.  

 

Keywords — R – number, span, 𝝀-number. 

 

1. INTRODUCTION 

 

 In this paper, we consider only simple,  

connected, undirected and finite graphs. For basic notations and terminology, we follow [6]. 

Let ),(= EVG  be a simple connected graph. The distance ),( vud  between u  and v , is the 

length of a shortest ),( vu  path in G . For any vertex Vu , the eccentricity, )(ue , of u  is 

the distance of a vertex farthest from u . The radius of a graph G  is the minimum 

eccentricity among all the vertices and is denoted by )(Grad . The diameter of G  is the 

maximum eccentricity among all the vertices and is denoted by )(Gdiam .  

 For a subset S  of V , let >< S  denote the induced subgraph of G  induced by S . By 

a clique C  we mean a maximal subset of V  such that >< C  is complete. The clique number 

of a graph G , denoted by  , is the number of vertices in a clique of maximum order in G . 

The concept of splitting graph was introduced by Sampath Kumar and Walikar[10]. The 

splitting graph of G  is obtained by adding a new vertex w  for every vertex Vv  and 

joining w  to all vertices of G  adjacent to v  and is denoted by )(GS . The cosplitting graph 

[1], CS(G) is obtained from G, by adding a new vertex w for each vertex v and joining w to 

all vertices which are not adjacent to v in G. The distance between the vertices in splitting and 

cosplitting graphs has been discussed in [2]. 

 In 1960’s Rosa[9] introduced the concept of graph labeling. A graph labeling is an 

assignment of number to the vertices or edges or both, satisfying some constraint. Rosa 

named the labeling introduced by him as valuation  and later on it becomes a very 

famous interesting graph labeling called graceful labeling, which is the origin for any graph 

mailto:2selvam_avadayappan@yahoo.co.in


International Journal of Aquatic Science  

ISSN: 2008-8019 

Vol 12, Issue 02, 2021 

 
 

50 
 

labeling problem. Motivated by real life problems, many mathematicians introduced various 

labeling concepts[7]. Here, we see one of the familiar graph labelings in graph theory. 

Let ))G(V(G),E(G be a graph. A radial radio labeling, f, of a connected graph G is an 

assignment of positive integers to the vertices satisfying the following condition: 

rvfufvud  1|)()(|),( , for any two distinct vertices )(, GVvu  , where ),( vud and r

denote the distance between the vertices u and v and the radius of the graph G, respectively. 

The span of a radial radio labeling f is the largest integer in the range of f and is denoted by 

span f. The radial radio number of G, )(Grr , is the minimum span taken over all radial radio 

labelings of G. 

For example, a graph G and its radial radio labeling are shown in Figure 1.1. 

 

 

 

 

 

 

 

 

G 

Figure 1.1 

 

Here, rad(G)=2 and rr(G)=6. 

 The radial radio number of any simple connected graph has been studied in [3], [4], 

[5] and [11]. 

 Given a simple conneced graph G(V(G), E(G)), an 𝐿(2,1) - labeling of G is a function 

f : V (G) → {0,1, 2, 3, ...} such that |f (u) - f (v)|≥2, if d(u, v) = 1 and |f (u) - f (v)|≥1, if d(u, v) 

= 2. The L(2,1) – labeling  number  𝜆(𝐺) is the smallest k  such that  G has an  L(2,1) – labeling with 

max{𝑓(𝑣): 𝑣 ∈ 𝑉(𝐺)} = 𝑘.  Inspired by the concept of distance 2 labeing introduced by 

Griggs [8], we introduce a new concept called  R- labeling which is defined as follows: 

An injective function f : V (G) → {1, 2, 3, ...} is said to be an R-labeling if it satisfies 

the following conditions for any two distinct vertices u, v ∈ V (G): 

 |f (u) − f (v)| ≥ 2, if d(u, v) = 1 

 |f (u) − f (v)| ≥ 1, if d(u, v) = 2 

 The span of an R−labeling, f , is the largest integer in the range of  f and is denoted 

by fR. The R− number R(G) of G is the minimum span taken over all R− labelings of G. 

That  is, R
f

fGR min)(  ,    where the minimum runs over all R−  labelings of G.   

 For example, consider the graph G. One of the R – labelings of G is shown in Figure 

1.2. 
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G 

Figure 1.2 

 The relationship between the radial radio number and the R – number of any given 

simple graph has been established in [12]. 

 Let 1G  and 2G  be any two graphs. The join of two graphs 1G  and 2G  is the graph 

whose vertex set is 21 VV   and the edge set is },:{ 2121 VvVuuvEE   and is denoted 

by 21 GG  . The union of two graphs 𝐺1and 𝐺2 is the graph whose vertex set is 𝑉1 ∪ 𝑉2 and 

the edge set is 𝐸1 ∪ 𝐸2and is denoted by  𝐺1 ∪ 𝐺2. 

 Let nnH ,  be the graph with vertex set },....,,;,...,,{ 2121 nn uuuvvv  and the edge set 

}1,1:{ njinniuv ji  . 

 The ladder graph 2KPn  is denoted by nL , where }1:,{)( niuvLV iin   and 

}1:,{)( 11 niuuvvLE iiiin   ∪                                       }1:{ niuv ii   

 For further details on R – number, one can refer [13] and [14]. 

I. Some Basic Results 

 Throughout this section, assume that G is a non trivial simple connected graph on n 

vertices.     

Now, we present some basic traits of R − number. 

 We note that, since the corresponding   R – labeling is one to one, no two vertices can 

get the same label. This forces that, R(G) ≥ n, for any graph G of order n. Also, this 

bound is sharp for Pn, n ≥ 4 and Cn, n ≥ 5.  

We prove these two results later in this section. 

Fact 2.1. If ω is the clique number of G, then R(G) ≥ 2ω − 1. 

 For, we  have,  the  label difference between adjacent vertices is at least 2. To   label the 

vertices of Kω, we definitely need the labels 1, 3, ..., 2ω − 1. Thus R(G) ≥ 2ω − 1. 

Remark 2.2. The bound in Fact 2.1 is sharp for the graph shown in Figure 2.1. 

 

 

 

 

 

 

 

 

G 

Figure 2.1 

 

 

Here, 𝜔 = 3 and R(G) = 5. 

Fact 2.3. For any graph G of order n, 

 n ≤ R(G) ≤ 2n − 1. 

 For, the lower bound for R(G) is trivial. Also, if G has n vertices, then by assigning the 

labels 1, 3, ... , 2n − 1 to the vertices of G, we get an R – labeling of G. This assures that 

upper bound for R(G) to be 2n − 1. 

 The upper bound attained in Fact 2.3 is sharp for the complete graphs Kn, where n ≥ 

3.  
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 In fact Kn is the only graph for which the R – number is 2n – 1. We prove this in the 

following theorem. 

Theorem 2.4. Let G be any graph of order n. Then  R(G) = 2n − 1 if and only if G≅ 𝐾𝑛. 

Proof 

Suppose G≅ 𝐾𝑛.  

Let V (G) = {vi : 1 ≤ i ≤ n}. Then define f : V (G) → {1, 2, 3, ..} such that  f (vi) = 2i − 1, 1 

≤i ≤ n. Since d(vi, vj) = 1, for all 1 ≤ i≠j ≤ n, we have |f (vi) − f (vj)|  ≥ 2.  This forces that, f  

is an R− labeling for G and fR = 2n – 1 Thus R(G) ≤ 2n − 1. But the clique number 𝜔 of G 

is n. Therefore, Fact 2.1 implies that, R(G) ≥ 2n – 1. Hence R(G) = 2n − 1.   

 Conversely, assume that, R(G) = 2n − 1. To show that, G≅Kn. On contrary, assume 

that, G is not isomorphic to Kn. Then the clique number of G, ω  ≤  n − 1. If ω  =  n − 1,  

then for any R −  labeling f of G,  we  have 𝑓𝑅 =    𝑓(𝑣)𝑣∈𝑉(𝐺)
𝑚𝑎𝑥 ≤ 2(ω − 1) + 1 < 2n − 1. 

This forces that, R(G) < 2n – 1, which is a contradiction. Hence G must be isomorphic to 

Kn.                                                                      ∎ 

Fact 2.5. If H is a subgraph of G, then R(H) ≤ R(G). 

 For, let f be an R – labeling of G. Then the restricted function f |V (H) is an R− 

labeling of H. This implies that, R(H) ≤  R(G). 

 Now, we turn our attention to find the R – number of paths. One can easily, check 

that, R(P2)=3, R(P3)=4. For, n≥4, we determine R(Pn) in the following Theorem. 

Theorem 2.6.  For n ≥ 4, R(Pn)= n. 

Proof 

Let V (Pn) = {vi : 1 ≤ i ≤ n} and let E(Pn) = {vivi+1 : 1 ≤ i ≤ n−1}. From Fact 2.3, we get R(Pn) 

≥ n, for n ≥ 4. Now, we will show that, for n ≥ 4, R(Pn) ≤ 4. 

Case 1 Let n = 2m, m ≥ 3, be an even integer 

In this case, define f : V (Pn) → {1, 2, 3, ..} such that  f (v2i−1) = i, 1 ≤ i ≤ m; f (v2i) = m + i, 1 ≤ i 

≤ m. Here, for the adjacent pair of vertices (v2i−1, v2i), 1 ≤ i ≤ m, we have |f (v2i−1) − f (v2i)| ≥ 

m > 2.  Also, for the pair (vi, vj), 1 ≤ i ≠ j  ≤ n  with d(vi, vj) = 2, we have |f (v2i−1) − f (v2i)| 

≥ 1.  Thus f is an R− labeling of P2m, where m ≥ 3. This implies that, fR = 2m and hence 

R(P2m) ≤ 2m. 

Case 2 Let n = 2m + 1, m ≥ 2, be an odd integer 

Define f : V (Pn) → {1, 2, 3, ..} such that f (v2i−1) = i, 1 ≤  i  ≤  m + 1; f (v2i) = m + i + 1, 1 

≤ i ≤ m. Proceed as in Case 1, we can prove that f is an R−labeling for P2m+1, m ≥ 2. This 

gives that, fR = 2m + 1 = n. Hence R(P2m+1) ≤ 2m + 1. This completes the proof. The R – 

labelings of the paths P10 and P11 are presented in Figure 2.2.                                                                 

∎ 
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P11 

Figure 2.2 

 Next, we focus on cycles. We can easily verify that, R(C3) = 5 and R(C4) = 5. 

Now, for n ≥ 5, we estimate R(Cn) in the following Theorem. 

Theorem 2.7.  For n ≥ 5, R(Cn) = n. 

 

1 6 2 7 3 8 4 9 5 10 

 

6 11 1 7 2 8 3 9 4 5 10 



International Journal of Aquatic Science  

ISSN: 2008-8019 

Vol 12, Issue 02, 2021 

 
 

53 
 

Proof 

Let V (Cn) = {vi : 1 ≤ i ≤ n} and let E(Cn) = {v1vn, vivi+1}. 

By Fact 2.3, we have R(Cn) ≥ n, for n ≥ 5. It is enough to show that, R(Cn) ≤ n, for n ≥ 5. 

Case 1 Let n = 2m, m ≥ 3 be an even integer. 

Here, define f : V (Cn) → {1, 2, 3, ..} such that f (v2i−1) = i, 1 ≤ i ≤ m;  f (v2i) = m + i, 1 ≤ 

i ≤ m. Since  f (vi) ≠ f  (vj), for every i, j, 1 ≤ i ≤ j ≤ n        ,         f  is one to one. We observe that |f (vi) 

− f (vj)| ≥ 2, if d(vi, vj) = 1 and  |f (vi) − f (vj)| ≥ 1, if d(vi, vj) ≥ 2. This forces that, f  is an 

R− labeling of Cn and fR = 2m and thus R(Cn) ≤ 2m. 

Case 2 Let n = 2m + 1, m ≥ 2, be an odd integer. 

If we define f : V (Pn) → {1, 2, 3, ..} such that  

   f (v2i−1) = i, 1 ≤ i ≤ m + 1; f (v2i) = m + i + 1, 1 ≤ i ≤ m, then as in Case 1, we can prove 

that, f  is an R− labeling of Cn and fR = 2m + 1. Thus R(Cn) ≤ 2m + 1. This completes the 

proof. The R – labelings of the cycles C9 and C10 are given in Figure 2.3.                           

∎ 
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Figure 2.3 

Theorem 2.8. For n ≥ 2, R(Hn,n) = 2n. 

Proof 

Let V (Hn,n)  =  {vi,   uj  :  1  ≤  i, j ≤  n}. By Fact 2.3, we have R(Hn,n) ≥ 2n. It is enough 

to show that, R(Hn,n) ≤ 2n.  

       Define f : V (Pn) →{1, 2, 3, ..} such that f (vi) = i, 1 ≤ i ≤ n; f (uj) = n + j, 1 ≤ j ≤ n. 

Here, we observe the following: 

     |f (vi) − f (vj)| ≥ 1, for every i,  j, 1 ≤ i ≠ j ≤ n; 

     |f (ui) − f (uj)| ≥ 1, for every i, j, 1 ≤ i ≠ j ≤ n; 
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     |f (vi) − f (uj)| ≥ 2, for every i,  j, 1 ≤ i, j ≤ n. 

Thus f is an R− labeling of Hn,n and fR = 2n and hence R(Hn,n) ≤ 2n. This completes 

the proof. An R – labeling of H5,5 is given in Figure 2.4.                                                  

∎ 
 

 

 

 

 

 

 

 

H5,5 

Figure 2.4 

Theorem 2.9. For n ≥ 3, R(Ln) = 2n. 

Proof 

By Fact 2.3, we have R(Ln)≥2n. It is enough to show that, R(Ln)≤2n.  

When  n = 3 or 4, the R – labelings for the graphs L3 and L4 are shown in Figure 

2.5, from which, 
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Figure 2.5 

we conclude that, R(L3)≤6 and R(L4)≤8. 

Now, we assume that n = 2m, m ≥ 3, is an even integer. Then we define f : V (Ln) → {1, 

2, 3, ..} such that    f (v2i−1) = i, 1 ≤ i ≤ m; f (v2i) = m + i, 1 ≤ i ≤ m; nvfuf ii  )()( , ni 1 . 

It is obvious that, f is one – one. Here, we can see that, 

2)()(  ji vfvf , if 1),( ji vvd ; 

1)()(  ji vfvf , if 2),( ji vvd ;  

2)()(  ji ufuf , if 1),( ji uud ; 

1)()(  ji ufuf , if 2),( ji uud ; 
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i 

2)()(  ji ufvf , if 1),( ji uvd ; 

1)()(  ji ufvf , if 2),( ji uvd , for all i, j, nji  ,1 . This gives that, f is an R – 

labeling of Ln. Also, span f = 2n and hence R(Ln)≤2n. 

Next, we consider the case when n ≥ 5 is  even. Take n = 2m + 1, m ≥ 2. In this case, 

we define f : V (Ln) → {1, 2, 3, ..} such that    f (v2i−1) = i, 1 ≤ i ≤ m + 1; f (v2i) = m + i + 1, 1 ≤ i 

≤ m; nvfuf ii  )()( , ni 1 . We can easily, check that f is an R – labeling and 

span f = 2n. Hence R(Ln)≤2n. This completes the proof.  ∎  

II. R – NUMBER OF SOME SPECIAL DERIVED GRAPHS 

 Throughout this section, assume that G is a graph with  n1 vertices and m1 edges and 

H is a graph with n2 vertices and m2 edges. 

Theorem 3.1 Let kGGG ,...,, 21  be simple connected graphs with R – numbers kRRR ,...,, 21 , 

respectively and let ii nGV )(  Then kk RRRGGGR  ...)...( 2121 UUU , 2k .  

Proof 

 Since any R – labeling is one – one, we cannot reuse  the label of any vertex in iG , to 

a vertex in jG , for all i, j, kji 1 . Hence kk RRRGGGR  ...)...( 2121 UUU . 

Also, since 1G is disjoint from 2G , the minimum possible labels for the vertices of 2G should 

be 2111 ,...,2,1 RRRR  . Proceeding like this, we obtain 

kk RRRGGGR  ...)...( 2121 UUU . This completes the proof.                              ∎ 

Theorem 3.2. R(G + H) = R(G) + R(H)+1. 

Proof 
Let V (G) = {vi : 1 ≤ i ≤ n1} and let V (H) = {ui : 1 ≤ i ≤ n2}.  

Then V (G + H) = V (G)∪V (H) and E(G + H) = E(G)∪E(H)∪ {viuj : 1 ≤ i ≤ n1 and 1 ≤ j ≤ 

n2}. Let f and g be R(G) and R(H) labelings of G and H, respectively. Then define h : V 

(G+H) → {1, 2, 3, ...} such that h(vi) = f (vi), 1 ≤ i ≤ n1 and h(uj) = g(uj)+R(H)+1, 1 ≤ j ≤ n2. 

Since dG+H(vi, uj) = 1, 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2 and |h(vi)−h(uj)| = |f (vi)−(g(uj)+R(H)+1)| 

≥ R(H) + 1 > 2, h is an R− labeling of G + H. Also, hR = R(G) + R(H) + 1. This implies 

that, R(G + H) ≤ R(G) + R(H) + 1. Suppose there exists an R− labeling c of G + H such that 

R(G + H) = R(G) + R(H). Then we can find a pair (vi, uj) such that |c(vi) − c(uj)| = 1, which is a 

contradiction that c is an R− labeling. This forces that, R(G + H) ≥ R(G) + R(H) + 1. Hence 

R(G + H) = R(G) + R(H) + 1.                          ∎ 

 From this result, we deduce the following: 

Corollary 3.3  

 For m ≥ n ≥ 1, R(Km,n) = m + n + 1. 

Theorem 3.4. For any graph G on n ≥ 3 vertices, R(S(G)) = R(G) + n. 

Proof 

Let f  be an R −  labeling of G  and let V (G) = {vi  : 1 ≤  i  ≤n}   such that f (v ) = R(G). 

Then V (S(G)) = V (G)∪{𝑣𝑖′ : 1 ≤ i ≤ n} and E(S(G)) = E(G)∪{ 𝑣𝑖′ u : u  ∈ NG(vi)}.  

Now, define g  : V (S(G)) →{1, 2, 3, ...} such that g(vi) = f (vi), 1 ≤ i ≤ n; g(𝑣𝑖′) =  f (vi) + 

1, 1 ≤ i ≤ n. Here, we have dS(G)(vi, 𝑣𝑖′) = 2. Then |g(vi) − g(𝑣𝑖′)| = |f (vi) − (f (vi)+ i)| ≥ 1 and 

|g(vi) − g(𝑣𝑖′)| ≥ |i − j| ≥ 1. This forces that, g is an R− labeling of S(G) and 𝑔(𝑣)𝑣∈𝑉(𝑆(𝐺))
𝑚𝑎𝑥 =

𝑅(𝐺) + 𝑛 and hence R(S(G)) ≤ R(G) + n. Since 𝑑𝑆(𝐺)(𝑣𝑖, 𝑣𝑖′) ≥ 2, distinct n positive 

integers R(G)+1, R(G)+2,..., R(G)+n are enough to label the vertices of V (S(G)) − V (G). 

Hence  R(S(G))  ≥  R(G) + n.  

This completes the proof.                                  ∎ 
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 Theorem 3.5. For any graph G on n ≥ 3 vertices, R(CS(G)) = R(G) + n. 

Proof 

Let f be an R – labeling of G and let }1:{)( nivGV i  such that )()( 1 GRvf  and 

)(21 GEvv  . Then V(CS(G))=V(G) ∪{𝑣𝑖′ : 1 ≤ i ≤ n} and E(CS(G)) = E(G) ∪ 

{ 𝑣𝑖′u:u∉NG(vi)}. 

Define ,...}3,2,1{))((: GCSVh  such that h(vi) = f (vi), 1 ≤ i ≤ n; h(𝑣1′) = R (G)+2; 

h(𝑣2′) = R (G)+1; h(𝑣𝑖′) = R (G)+3, 3 ≤ i ≤ n. Here, we have 1)'()( 21  vhvh and 

1)'()'(  ji vhvh . Thus h is an R – labeling of CS(G). Also, nGRhR  )(  and hence 

nGRGCSR  )())(( . Since 2)','()( jiGCS vvd , distinct n positive integers R(G)+1, 

R(G)+2,..., R(G)+n are enough to label the vertices of V(CS(G)) – V(G). Hence 

nGRGCSR  )())(( . This completes the proof.                                  ∎   
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