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Abstract - Let G(V(G),E(G)) be a simple connected graph. An injective function f : V (G) 

→ {1, 2, 3, ...} is said to be  an  R-labeling if it satisfies the following conditions: |f (u) − f 

(v)| ≥ 2, if d(u, v) = 1 ;  |f (u) − f (v)| ≥ 1, if d(u, v) = 2, for  any two distinct vertices u, v ∈ V 

(G). The  span of  an  R−labeling,   f , is  the   largest  integer  in the  range of  f  and is 

denoted by fR. The R− number, R(G) or R of G is the minimum span taken over all  R− 

labelings of G. In this paper, we determine the R – number of some families of 

graphs.  

 

Keywords — R – number, span, 𝝀-number. 

 

1. INTRODUCTION 

 

 In this paper, we consider only simple,  

connected, undirected and finite graphs. For basic notations and terminology, we follow [6]. 

Let ),(= EVG  be a simple connected graph. The distance ),( vud  between u  and v , is the 

length of a shortest ),( vu  path in G . For any vertex Vu , the eccentricity, )(ue , of u  is 

the distance of a vertex farthest from u . The radius of a graph G  is the minimum 

eccentricity among all the vertices and is denoted by )(Grad . The diameter of G  is the 

maximum eccentricity among all the vertices and is denoted by )(Gdiam .  

 For a subset S  of V , let >< S  denote the induced subgraph of G  induced by S . By 

a clique C  we mean a maximal subset of V  such that >< C  is complete. The clique number 

of a graph G , denoted by  , is the number of vertices in a clique of maximum order in G . 

The concept of splitting graph was introduced by Sampath Kumar and Walikar[10]. The 

splitting graph of G  is obtained by adding a new vertex w  for every vertex Vv  and 

joining w  to all vertices of G  adjacent to v  and is denoted by )(GS . The cosplitting graph 

[1], CS(G) is obtained from G, by adding a new vertex w for each vertex v and joining w to 

all vertices which are not adjacent to v in G. The distance between the vertices in splitting and 

cosplitting graphs has been discussed in [2]. 

 In 1960’s Rosa[9] introduced the concept of graph labeling. A graph labeling is an 

assignment of number to the vertices or edges or both, satisfying some constraint. Rosa 

named the labeling introduced by him as valuation  and later on it becomes a very 

famous interesting graph labeling called graceful labeling, which is the origin for any graph 
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labeling problem. Motivated by real life problems, many mathematicians introduced various 

labeling concepts[7]. Here, we see one of the familiar graph labelings in graph theory. 

Let ))G(V(G),E(G be a graph. A radial radio labeling, f, of a connected graph G is an 

assignment of positive integers to the vertices satisfying the following condition: 

rvfufvud  1|)()(|),( , for any two distinct vertices )(, GVvu  , where ),( vud and r

denote the distance between the vertices u and v and the radius of the graph G, respectively. 

The span of a radial radio labeling f is the largest integer in the range of f and is denoted by 

span f. The radial radio number of G, )(Grr , is the minimum span taken over all radial radio 

labelings of G. 

For example, a graph G and its radial radio labeling are shown in Figure 1.1. 

 

 

 

 

 

 

 

 

G 

Figure 1.1 

 

Here, rad(G)=2 and rr(G)=6. 

 The radial radio number of any simple connected graph has been studied in [3], [4], 

[5] and [11]. 

 Given a simple conneced graph G(V(G), E(G)), an 𝐿(2,1) - labeling of G is a function 

f : V (G) → {0,1, 2, 3, ...} such that |f (u) - f (v)|≥2, if d(u, v) = 1 and |f (u) - f (v)|≥1, if d(u, v) 

= 2. The L(2,1) – labeling  number  𝜆(𝐺) is the smallest k  such that  G has an  L(2,1) – labeling with 

max{𝑓(𝑣): 𝑣 ∈ 𝑉(𝐺)} = 𝑘.  Inspired by the concept of distance 2 labeing introduced by 

Griggs [8], we introduce a new concept called  R- labeling which is defined as follows: 

An injective function f : V (G) → {1, 2, 3, ...} is said to be an R-labeling if it satisfies 

the following conditions for any two distinct vertices u, v ∈ V (G): 

 |f (u) − f (v)| ≥ 2, if d(u, v) = 1 

 |f (u) − f (v)| ≥ 1, if d(u, v) = 2 

 The span of an R−labeling, f , is the largest integer in the range of  f and is denoted 

by fR. The R− number R(G) of G is the minimum span taken over all R− labelings of G. 

That  is, R
f

fGR min)(  ,    where the minimum runs over all R−  labelings of G.   

 For example, consider the graph G. One of the R – labelings of G is shown in Figure 

1.2. 
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G 

Figure 1.2 

 The relationship between the radial radio number and the R – number of any given 

simple graph has been established in [12]. 

 Let 1G  and 2G  be any two graphs. The join of two graphs 1G  and 2G  is the graph 

whose vertex set is 21 VV   and the edge set is },:{ 2121 VvVuuvEE   and is denoted 

by 21 GG  . The union of two graphs 𝐺1and 𝐺2 is the graph whose vertex set is 𝑉1 ∪ 𝑉2 and 

the edge set is 𝐸1 ∪ 𝐸2and is denoted by  𝐺1 ∪ 𝐺2. 

 Let nnH ,  be the graph with vertex set },....,,;,...,,{ 2121 nn uuuvvv  and the edge set 

}1,1:{ njinniuv ji  . 

 The ladder graph 2KPn  is denoted by nL , where }1:,{)( niuvLV iin   and 

}1:,{)( 11 niuuvvLE iiiin   ∪                                       }1:{ niuv ii   

 For further details on R – number, one can refer [13] and [14]. 

I. Some Basic Results 

 Throughout this section, assume that G is a non trivial simple connected graph on n 

vertices.     

Now, we present some basic traits of R − number. 

 We note that, since the corresponding   R – labeling is one to one, no two vertices can 

get the same label. This forces that, R(G) ≥ n, for any graph G of order n. Also, this 

bound is sharp for Pn, n ≥ 4 and Cn, n ≥ 5.  

We prove these two results later in this section. 

Fact 2.1. If ω is the clique number of G, then R(G) ≥ 2ω − 1. 

 For, we  have,  the  label difference between adjacent vertices is at least 2. To   label the 

vertices of Kω, we definitely need the labels 1, 3, ..., 2ω − 1. Thus R(G) ≥ 2ω − 1. 

Remark 2.2. The bound in Fact 2.1 is sharp for the graph shown in Figure 2.1. 

 

 

 

 

 

 

 

 

G 

Figure 2.1 

 

 

Here, 𝜔 = 3 and R(G) = 5. 

Fact 2.3. For any graph G of order n, 

 n ≤ R(G) ≤ 2n − 1. 

 For, the lower bound for R(G) is trivial. Also, if G has n vertices, then by assigning the 

labels 1, 3, ... , 2n − 1 to the vertices of G, we get an R – labeling of G. This assures that 

upper bound for R(G) to be 2n − 1. 

 The upper bound attained in Fact 2.3 is sharp for the complete graphs Kn, where n ≥ 

3.  

1 

2 

3 

5 

4 



International Journal of Aquatic Science  

ISSN: 2008-8019 

Vol 12, Issue 02, 2021 

 
 

52 
 

 In fact Kn is the only graph for which the R – number is 2n – 1. We prove this in the 

following theorem. 

Theorem 2.4. Let G be any graph of order n. Then  R(G) = 2n − 1 if and only if G≅ 𝐾𝑛. 

Proof 

Suppose G≅ 𝐾𝑛.  

Let V (G) = {vi : 1 ≤ i ≤ n}. Then define f : V (G) → {1, 2, 3, ..} such that  f (vi) = 2i − 1, 1 

≤i ≤ n. Since d(vi, vj) = 1, for all 1 ≤ i≠j ≤ n, we have |f (vi) − f (vj)|  ≥ 2.  This forces that, f  

is an R− labeling for G and fR = 2n – 1 Thus R(G) ≤ 2n − 1. But the clique number 𝜔 of G 

is n. Therefore, Fact 2.1 implies that, R(G) ≥ 2n – 1. Hence R(G) = 2n − 1.   

 Conversely, assume that, R(G) = 2n − 1. To show that, G≅Kn. On contrary, assume 

that, G is not isomorphic to Kn. Then the clique number of G, ω  ≤  n − 1. If ω  =  n − 1,  

then for any R −  labeling f of G,  we  have 𝑓𝑅 =    𝑓(𝑣)𝑣∈𝑉(𝐺)
𝑚𝑎𝑥 ≤ 2(ω − 1) + 1 < 2n − 1. 

This forces that, R(G) < 2n – 1, which is a contradiction. Hence G must be isomorphic to 

Kn.                                                                      ∎ 

Fact 2.5. If H is a subgraph of G, then R(H) ≤ R(G). 

 For, let f be an R – labeling of G. Then the restricted function f |V (H) is an R− 

labeling of H. This implies that, R(H) ≤  R(G). 

 Now, we turn our attention to find the R – number of paths. One can easily, check 

that, R(P2)=3, R(P3)=4. For, n≥4, we determine R(Pn) in the following Theorem. 

Theorem 2.6.  For n ≥ 4, R(Pn)= n. 

Proof 

Let V (Pn) = {vi : 1 ≤ i ≤ n} and let E(Pn) = {vivi+1 : 1 ≤ i ≤ n−1}. From Fact 2.3, we get R(Pn) 

≥ n, for n ≥ 4. Now, we will show that, for n ≥ 4, R(Pn) ≤ 4. 

Case 1 Let n = 2m, m ≥ 3, be an even integer 

In this case, define f : V (Pn) → {1, 2, 3, ..} such that  f (v2i−1) = i, 1 ≤ i ≤ m; f (v2i) = m + i, 1 ≤ i 

≤ m. Here, for the adjacent pair of vertices (v2i−1, v2i), 1 ≤ i ≤ m, we have |f (v2i−1) − f (v2i)| ≥ 

m > 2.  Also, for the pair (vi, vj), 1 ≤ i ≠ j  ≤ n  with d(vi, vj) = 2, we have |f (v2i−1) − f (v2i)| 

≥ 1.  Thus f is an R− labeling of P2m, where m ≥ 3. This implies that, fR = 2m and hence 

R(P2m) ≤ 2m. 

Case 2 Let n = 2m + 1, m ≥ 2, be an odd integer 

Define f : V (Pn) → {1, 2, 3, ..} such that f (v2i−1) = i, 1 ≤  i  ≤  m + 1; f (v2i) = m + i + 1, 1 

≤ i ≤ m. Proceed as in Case 1, we can prove that f is an R−labeling for P2m+1, m ≥ 2. This 

gives that, fR = 2m + 1 = n. Hence R(P2m+1) ≤ 2m + 1. This completes the proof. The R – 

labelings of the paths P10 and P11 are presented in Figure 2.2.                                                                 

∎ 
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P11 

Figure 2.2 

 Next, we focus on cycles. We can easily verify that, R(C3) = 5 and R(C4) = 5. 

Now, for n ≥ 5, we estimate R(Cn) in the following Theorem. 

Theorem 2.7.  For n ≥ 5, R(Cn) = n. 
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Proof 

Let V (Cn) = {vi : 1 ≤ i ≤ n} and let E(Cn) = {v1vn, vivi+1}. 

By Fact 2.3, we have R(Cn) ≥ n, for n ≥ 5. It is enough to show that, R(Cn) ≤ n, for n ≥ 5. 

Case 1 Let n = 2m, m ≥ 3 be an even integer. 

Here, define f : V (Cn) → {1, 2, 3, ..} such that f (v2i−1) = i, 1 ≤ i ≤ m;  f (v2i) = m + i, 1 ≤ 

i ≤ m. Since  f (vi) ≠ f  (vj), for every i, j, 1 ≤ i ≤ j ≤ n        ,         f  is one to one. We observe that |f (vi) 

− f (vj)| ≥ 2, if d(vi, vj) = 1 and  |f (vi) − f (vj)| ≥ 1, if d(vi, vj) ≥ 2. This forces that, f  is an 

R− labeling of Cn and fR = 2m and thus R(Cn) ≤ 2m. 

Case 2 Let n = 2m + 1, m ≥ 2, be an odd integer. 

If we define f : V (Pn) → {1, 2, 3, ..} such that  

   f (v2i−1) = i, 1 ≤ i ≤ m + 1; f (v2i) = m + i + 1, 1 ≤ i ≤ m, then as in Case 1, we can prove 

that, f  is an R− labeling of Cn and fR = 2m + 1. Thus R(Cn) ≤ 2m + 1. This completes the 

proof. The R – labelings of the cycles C9 and C10 are given in Figure 2.3.                           

∎ 
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Figure 2.3 

Theorem 2.8. For n ≥ 2, R(Hn,n) = 2n. 

Proof 

Let V (Hn,n)  =  {vi,   uj  :  1  ≤  i, j ≤  n}. By Fact 2.3, we have R(Hn,n) ≥ 2n. It is enough 

to show that, R(Hn,n) ≤ 2n.  

       Define f : V (Pn) →{1, 2, 3, ..} such that f (vi) = i, 1 ≤ i ≤ n; f (uj) = n + j, 1 ≤ j ≤ n. 

Here, we observe the following: 

     |f (vi) − f (vj)| ≥ 1, for every i,  j, 1 ≤ i ≠ j ≤ n; 

     |f (ui) − f (uj)| ≥ 1, for every i, j, 1 ≤ i ≠ j ≤ n; 
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     |f (vi) − f (uj)| ≥ 2, for every i,  j, 1 ≤ i, j ≤ n. 

Thus f is an R− labeling of Hn,n and fR = 2n and hence R(Hn,n) ≤ 2n. This completes 

the proof. An R – labeling of H5,5 is given in Figure 2.4.                                                  

∎ 
 

 

 

 

 

 

 

 

H5,5 

Figure 2.4 

Theorem 2.9. For n ≥ 3, R(Ln) = 2n. 

Proof 

By Fact 2.3, we have R(Ln)≥2n. It is enough to show that, R(Ln)≤2n.  

When  n = 3 or 4, the R – labelings for the graphs L3 and L4 are shown in Figure 

2.5, from which, 
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L4 

Figure 2.5 

we conclude that, R(L3)≤6 and R(L4)≤8. 

Now, we assume that n = 2m, m ≥ 3, is an even integer. Then we define f : V (Ln) → {1, 

2, 3, ..} such that    f (v2i−1) = i, 1 ≤ i ≤ m; f (v2i) = m + i, 1 ≤ i ≤ m; nvfuf ii  )()( , ni 1 . 

It is obvious that, f is one – one. Here, we can see that, 

2)()(  ji vfvf , if 1),( ji vvd ; 

1)()(  ji vfvf , if 2),( ji vvd ;  

2)()(  ji ufuf , if 1),( ji uud ; 

1)()(  ji ufuf , if 2),( ji uud ; 
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i 

2)()(  ji ufvf , if 1),( ji uvd ; 

1)()(  ji ufvf , if 2),( ji uvd , for all i, j, nji  ,1 . This gives that, f is an R – 

labeling of Ln. Also, span f = 2n and hence R(Ln)≤2n. 

Next, we consider the case when n ≥ 5 is  even. Take n = 2m + 1, m ≥ 2. In this case, 

we define f : V (Ln) → {1, 2, 3, ..} such that    f (v2i−1) = i, 1 ≤ i ≤ m + 1; f (v2i) = m + i + 1, 1 ≤ i 

≤ m; nvfuf ii  )()( , ni 1 . We can easily, check that f is an R – labeling and 

span f = 2n. Hence R(Ln)≤2n. This completes the proof.  ∎  

II. R – NUMBER OF SOME SPECIAL DERIVED GRAPHS 

 Throughout this section, assume that G is a graph with  n1 vertices and m1 edges and 

H is a graph with n2 vertices and m2 edges. 

Theorem 3.1 Let kGGG ,...,, 21  be simple connected graphs with R – numbers kRRR ,...,, 21 , 

respectively and let ii nGV )(  Then kk RRRGGGR  ...)...( 2121 UUU , 2k .  

Proof 

 Since any R – labeling is one – one, we cannot reuse  the label of any vertex in iG , to 

a vertex in jG , for all i, j, kji 1 . Hence kk RRRGGGR  ...)...( 2121 UUU . 

Also, since 1G is disjoint from 2G , the minimum possible labels for the vertices of 2G should 

be 2111 ,...,2,1 RRRR  . Proceeding like this, we obtain 

kk RRRGGGR  ...)...( 2121 UUU . This completes the proof.                              ∎ 

Theorem 3.2. R(G + H) = R(G) + R(H)+1. 

Proof 
Let V (G) = {vi : 1 ≤ i ≤ n1} and let V (H) = {ui : 1 ≤ i ≤ n2}.  

Then V (G + H) = V (G)∪V (H) and E(G + H) = E(G)∪E(H)∪ {viuj : 1 ≤ i ≤ n1 and 1 ≤ j ≤ 

n2}. Let f and g be R(G) and R(H) labelings of G and H, respectively. Then define h : V 

(G+H) → {1, 2, 3, ...} such that h(vi) = f (vi), 1 ≤ i ≤ n1 and h(uj) = g(uj)+R(H)+1, 1 ≤ j ≤ n2. 

Since dG+H(vi, uj) = 1, 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2 and |h(vi)−h(uj)| = |f (vi)−(g(uj)+R(H)+1)| 

≥ R(H) + 1 > 2, h is an R− labeling of G + H. Also, hR = R(G) + R(H) + 1. This implies 

that, R(G + H) ≤ R(G) + R(H) + 1. Suppose there exists an R− labeling c of G + H such that 

R(G + H) = R(G) + R(H). Then we can find a pair (vi, uj) such that |c(vi) − c(uj)| = 1, which is a 

contradiction that c is an R− labeling. This forces that, R(G + H) ≥ R(G) + R(H) + 1. Hence 

R(G + H) = R(G) + R(H) + 1.                          ∎ 

 From this result, we deduce the following: 

Corollary 3.3  

 For m ≥ n ≥ 1, R(Km,n) = m + n + 1. 

Theorem 3.4. For any graph G on n ≥ 3 vertices, R(S(G)) = R(G) + n. 

Proof 

Let f  be an R −  labeling of G  and let V (G) = {vi  : 1 ≤  i  ≤n}   such that f (v ) = R(G). 

Then V (S(G)) = V (G)∪{𝑣𝑖′ : 1 ≤ i ≤ n} and E(S(G)) = E(G)∪{ 𝑣𝑖′ u : u  ∈ NG(vi)}.  

Now, define g  : V (S(G)) →{1, 2, 3, ...} such that g(vi) = f (vi), 1 ≤ i ≤ n; g(𝑣𝑖′) =  f (vi) + 

1, 1 ≤ i ≤ n. Here, we have dS(G)(vi, 𝑣𝑖′) = 2. Then |g(vi) − g(𝑣𝑖′)| = |f (vi) −(f (vi)+ i)| ≥ 1 and 

|g(vi) − g(𝑣𝑖′)| ≥ |i − j| ≥ 1. This forces that, g is an R− labeling of S(G) and 𝑔(𝑣)𝑣∈𝑉(𝑆(𝐺))
𝑚𝑎𝑥 =

𝑅(𝐺) + 𝑛 and hence R(S(G)) ≤ R(G) + n. Since 𝑑𝑆(𝐺)(𝑣𝑖, 𝑣𝑖′) ≥ 2, distinct n positive 

integers R(G)+1, R(G)+2,..., R(G)+n are enough to label the vertices of V (S(G)) − V (G). 

Hence  R(S(G))  ≥  R(G) + n.  

This completes the proof.                                  ∎ 
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 Theorem 3.5. For any graph G on n ≥ 3 vertices, R(CS(G)) = R(G) + n. 

Proof 

Let f be an R – labeling of G and let }1:{)( nivGV i  such that )()( 1 GRvf  and 

)(21 GEvv  . Then V(CS(G))=V(G) ∪{𝑣𝑖′ : 1 ≤ i ≤ n} and E(CS(G)) = E(G) ∪ 

{ 𝑣𝑖′u:u∉NG(vi)}. 

Define ,...}3,2,1{))((: GCSVh  such that h(vi) = f (vi), 1 ≤ i ≤ n; h(𝑣1′) = R (G)+2; 

h(𝑣2′) = R (G)+1; h(𝑣𝑖′) = R (G)+3, 3 ≤ i ≤ n. Here, we have 1)'()( 21  vhvh and 

1)'()'(  ji vhvh . Thus h is an R – labeling of CS(G). Also, nGRhR  )(  and hence 

nGRGCSR  )())(( . Since 2)','()( jiGCS vvd , distinct n positive integers R(G)+1, 

R(G)+2,..., R(G)+n are enough to label the vertices of V(CS(G)) – V(G). Hence 

nGRGCSR  )())(( . This completes the proof.                                  ∎   
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