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Abstract - Let G(V(G),E(G)) be a simple connected graph. An injective functionf : V (G)
—{1,2,3,...}issaidtobe an R-labeling if itsatisfies the following conditions: [ (u)—f
M =2,ifd(u,v)=1; [F(u)—F() =1, if d(u,v)=2, for anytwodistinctverticesu,v €V
(G). The span of an R—labeling, f,is the largest integer inthe rangeof f and is
denoted by fr. The R—number,R(G) or Rof G isthe minimum spantaken overall R—
labelings of G. In this paper, we determine the R — number of some families of
graphs.

Keywords — R — number, span, A-number.
1. INTRODUCTION

In this paper, we consider only simple,
connected, undirected and finite graphs. For basic notations and terminology, we follow [6].
Let G =(V,E) be a simple connected graph. The distance d(u,v) between U and Vv, is the

length of a shortest (u,v)— path in G. For any vertex u eV, the eccentricity, e(u), of U is

the distance of a vertex farthest from u. The radius of a graph G is the minimum
eccentricity among all the vertices and is denoted by rad(G). The diameter of G is the

maximum eccentricity among all the vertices and is denoted by diam(G).

Forasubset S of V , let <S> denote the induced subgraph of G induced by S . By
a cligue C we mean a maximal subset of V such that <C > is complete. The cliqgue number
of a graph G, denoted by @, is the number of vertices in a clique of maximum order in G .
The concept of splitting graph was introduced by Sampath Kumar and Walikar[10]. The
splitting graph of G is obtained by adding a new vertex w for every vertex veV and
joining W to all vertices of G adjacent to vV and is denoted by S(G). The cosplitting graph
[1], CS(G) is obtained from G, by adding a new vertex w for each vertex v and joining w to
all vertices which are not adjacent to v in G. The distance between the vertices in splitting and
cosplitting graphs has been discussed in [2].

In 1960’s Rosa[9] introduced the concept of graph labeling. A graph labeling is an
assignment of number to the vertices or edges or both, satisfying some constraint. Rosa
named the labeling introduced by him as g —valuation and later on it becomes a very

famous interesting graph labeling called graceful labeling, which is the origin for any graph
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labeling problem. Motivated by real life problems, many mathematicians introduced various
labeling concepts[7]. Here, we see one of the familiar graph labelings in graph theory.
LetG(V(G),E(G)) be a graph. A radial radio labeling, f, of a connected graph G is an
assignment of positive integers to the vertices satisfying the following condition:
d(u,v)+| f(u)— f(v) =1+r, for any two distinct verticesu,veV(G), whered(u,v)andr
denote the distance between the vertices u and v and the radius of the graph G, respectively.
The span of a radial radio labeling f is the largest integer in the range of f and is denoted by
span f. The radial radio number of G, rr(G), is the minimum span taken over all radial radio

labelings of G.
For example, a graph G and its radial radio labeling are shown in Figure 1.1.
6 4 1
[ 4
3
2 5
G
Figure 1.1

Here, rad(G)=2 and rr(G)=6.

The radial radio number of any simple connected graph has been studied in [3], [4],
[5] and [11].

Given a simple conneced graph G(V(G), E(G)), an L(2,1) - labeling of G is a function
f:V(G)—{0,1,2,3,...} such that |f (u) - f (v)|=2, if d(u,v)=1and |f (u) - f (v)|=1, if d(u, v)
= 2. The L(2,1) — labeling number A(G) is the smallest k such that G has an L(2,1) — labeling with
max{f(v):v € V(G)} = k. Inspired by the concept of distance 2 labeing introduced by
Griggs [8], we introduce a new concept called R- labeling which is defined as follows:

Aninjective functionf : V (G) — {1, 2, 3, ...} issaid to be an R-labeling if itsatisfies
the following conditions forany twodistinctverticesu,v € V (G):

[F(u)—Ff(v)|>2,ifd(u,v)=1

[f(u)—Ff(v)|>1,ifd(u,v)=2

Thespan ofanR—labeling, f,isthe largest integerintherangeof fand is denoted
by fr. The R— number R(G) of G is the minimum span taken overall R— labelings of G.
That is, R(G) = mfin f- ,where the minimum runs over all R— labelings of G.

For example, consider the graph G. One of the R — labelings of G is shown in Figure

1.2 . 1 5
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G
Figure 1.2
The relationship between the radial radio number and the R — number of any given
simple graph has been established in [12].
Let G, and G, be any two graphs. The join of two graphs G, and G, is the graph

whose vertex set is V, UV, and the edge set is E, WE, u{uv:u eV, veV,} and is denoted
by G, +G,. The union of two graphs G,and G, is the graph whose vertex set is V; U V, and
the edge set is E; U E,and is denoted by G; U G,.

Let H,, be the graph with vertex set {v,,V,,..,V,;U;,U,,...,u } and the edge set
{vu;:1<i<n,n-i+1< j<n}.

The ladder graph P, xK.,is denoted by L., where V(L )={v.,u :1<i<n} and
E(L,))={v,v,,,uu,, 1<i<n}uU {v,u, :1<i<n}

For further details on R — number, one can refer [13] and [14].

I.  Some Basic Results

Throughout this section, assume that G is a non trivial simple connected graph on n
vertices.

Now, we present some basic traits of R — number.

We note that, since the corresponding R — labeling is one to one, no two vertices can
get the same label. This forces that, R(G) > n, for any graph G of order n. Also, this
bound is sharp for Pn, n >4 and Cn, n> 5.

We prove these two results later in this section.
Fact 2.1. If w is the clique number of G, then R(G) > 2w — 1.

For,we have, the label difference between adjacent vertices is at least 2. To label the
vertices of K., we definitely need the labels 1, 3, ...,20w— 1. Thus R(G) > 2w — 1.

Remark 2.2. The bound in Fact 2.1 is sharp for the graph shown in Figure 2.1.

2 5

G
Figure 2.1

Here, w = 3 and R(G) = 5.
Fact 2.3. For any graph G of order n,
Nn<R(G)<2n-1.

For, the lower bound for R(G) is trivial. Also, if G has n vertices, then by assigning the
labels 1, 3, ..., 2n — 1 to the vertices of G, we get an R — labeling of G. This assures that
upper bound for R(G) to be 2n — 1.

The upper bound attained in Fact 2.3 is sharp for the complete graphs Kn, where n >
3.
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In fact Kn is the only graph for which the R — number is 2n — 1. We prove this in the
following theorem.

Theorem 2.4. Let G be any graph of order n. Then R(G) =2n— 1 if and only if G= K.
Proof

Suppose G= K.

Let V(G)={vi:1<i<n}. Thendefinef :V(G)— {1,2,3,.}suchthat f(vi)=2i—1,1
<i<n. Sinced(vi,vj)=1,forall L<i=j <n, we have |f(vi) — f(vj)| > 2. This forces that, f
is an R— labeling for G and fr =2n-1 Thus R(G) < 2n—1. But the clique number w of G
is n. Therefore, Fact 2.1 implies that, R(G) > 2n—1. Hence R(G) =2n — 1.

Conversely, assume that, R(G) = 2n — 1. To show that, G=K,. On contrary, assume
that, G is not isomorphic to Kn. Then the clique number of G, w < n—1. Ifw = n—1,
then for any R — labeling f of G, we have fz = ,ep(@) f(M=2(@ —1) +1<2n-1
This forces that, R(G) < 2n — 1, which is a contradiction. Hence G must be isomorphic to
Kn. |
Fact 2.5. If H is a subgraph of G, then R(H) < R(G).

For, let f be an R — labeling of G. Then the restricted function f|v (v is an R—
labeling of H. This implies that, R(H) < R(G).

Now, we turn our attention to find the R — number of paths. One can easily, check
that, R(P2)=3, R(P3)=4. For, n=4, we determine R(Py) in the following Theorem.
Theorem 2.6. For n> 4, R(Pn)=n.

Proof

LetV (Pn) ={vi:1<i<n}andletE(Pn) ={vivi+1 : 1 <i<n—1}. From Fact 2.3, we get R(Pn)
>n, for n > 4. Now, we will show that, for n >4, R(Pp) < 4.

Case 1 Letn=2m, m > 3, be an even integer

Inthiscase, definef :V (Pn) — {1, 2,3, ..} suchthat f(v2i-1)=i,1<i<m; f(v2i))=m+i, 1<i
<m. Here, fortheadjacentpairofvertices (v2i-1,Vv2i), 1 < i <m, we have |f(v2i-1) — F(v2i)| >
m > 2. Also, for the pair (vi,vj), 1 <i # j < n with d(vi, vj) = 2, we have [f(v2i-1) — F(vai)|
> 1. Thus fisan R— labeling of Pom, where m > 3. This implies that, fr =2m and hence
R(PZm) SZm.

Case2 Letn=2m + 1, m > 2, be an odd integer

Define f : V (Pn) — {1, 2,3, ..} suchthat f (v2i-1) =i, 1 < i < m+1; f(va)=m+i+1,1
<i<m. Proceed as in Case 1, we can prove that f is an R—labeling for Pom+1, m > 2. This
gives that, fr =2m +1 =n. Hence R(P2m+1) < 2m +1. This completes the proof. The R —
labelings of the paths Pio and P11 are presented in Figure 2.2.

P1o

1 7 2 8 3 9 4 10 5 11 6
—r—r——r——r—r——+——o
P11

Figure 2.2

Next, we focus on cycles. We can easily verify that, R(C3) = 5 and R(C4) = 5.
Now, for n = 5, we estimate R(C,) in the following Theorem.
Theorem 2.7. Forn>5, R(Cn) =n.
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Proof
Let V (Cn) ={vi: 1 <i<n}and let E(Cn) = {ViVn, ViVi+1}.
By Fact 2.3, we have R(Cn) > n, for n>5. It is enough to show that, R(Cn) <n, for n > 5.
Case 1 Letn =2m, m > 3 be an even integer.
Here, define f : V(Cn) — {1,2,3,..} such that f(v2i-1) =i, 1 <i<m; f(va)=m+i,1<
I <m. Since f(vi) # f (vj), foreveryi, j,1<i<J <n, fis one to one. We observe that |f(vi)
—Tf(vj)| = 2, if d(vi,vj) =L and [F(vi)— F(vj)| > 1, if d(vi, vj) > 2. This forces that, ¥ is an
R— labeling of Cn and fr = 2m and thus R(Cn)< 2m.
Case 2 Letn=2m + 1, m > 2, be an odd integer.
If we define f : V (Pn) — {1, 2,3, ..} such that

f(vaiir) =i,1<i<m+1;f (v2)=m+i+1,1<i<m,thenasin Case 1, we can prove
that, f is an R— labeling of C, and fr = 2m + 1. Thus R(Cn) <2m + 1. This completes the
proof. The R — labelings of the cycles C9 and Cio are given in Figure 2.3.

[
1
5 6
9 2
4
7
8
Co 3
1
10 6
2
5
7
9 3
4 8
Cio
Figure 2.3
Theorem 2.8. For n > 2, R(Hnn) =2n.
Proof

LetV (Hhn) = {vi, Uj : 1 < i,j< n}. By Fact2.3, we have R(Hnn) > 2n. Itis enough
to show that, R(Hn,n) < 2n.
Define f :V (Pn) —{1,2,3, ..} suchthatf(vi)=i,1<i<n;f(u)=n+j,1<j <n.
Here, we observe the following:
IF(vi)—F(vj)| =1, foreveryi, j,1<i#j<n;
If(ui)—F(uj)|>1, foreveryi, j,1<i#j<n;
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[F(vi)— F(uj)|>2, forevery i, j,1<i,j <n.
Thus f is an R— labeling of Hnn and fr = 2n and hence R(Hnn) < 2n. This completes

the proof. An R — labeling of Hss is given in Figure 2.4.
|

1 2 3 4 5

®

o Hs,s

6 7 Bigure 2.4 9 10
Theorem 2.9. For n > 3, R(Ln) = 2n.
Proof

By Fact 2.3, we have R(Ln)=2n. It is enough to show that, R(Ln)<2n.

When n = 3 or 4, the R — labelings for the graphs Lz and L4 are shown in Figure
2.5, from which,

1 6 3
2 5
Ls
1 6 2 4
_ L43 5 8
Figure 2.5

we conclude that, R(L3)<6 and R(L4)<8.

Now, we assume that n = 2m, m > 3, is an even integer. Then we definef :V (Ln) — {1,
2,3,..}suchthat f(v2i-1)=i,1<i<m; f(vai)=m+i,1<i<m; f(u,)=f(v,)+n, 1<i<n.
It is obvious that, f is one — one. Here, we can see that,

[fv) - fvp|=2,if dv,,v;) =1;

F(v) = F(v))| 21, if d(v;,v)=2;

|fu)—f(up|=2,if d(u;,u;)=1;
|f(u) = f(up)| =1, if d(u,,uj)=2;
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[f(v) = fup)|=2,if d(v,,u;)=1;

[ |

|[f(v,) - f(uy)|=1, if d(v,,u;)=2, for all i, j, 1<i, j<n. This gives that, f is an R —

labeling of Ln. Also, span f = 2n and hence R(Ln)<2n.
Next, we consider the case when n > 5 is even. Take n=2m + 1, m > 2. In this case,
we definef :V (Ln)—{1,2,3,..}suchthat f(v2i-1)=1,1<i<m + 1; f(v2i))=m+i + 1,1<i
<m; f(u,)="f(v,)+n, 1<i<n. We can easily, check that f is an R — labeling and
span f = 2n. Hence R(Ln)<2n. This completes the proof. m
II.  R—-NUMBER OF SOME SPECIAL DERIVED GRAPHS

Throughout this section, assume that G is a graph with n vertices and m; edges and
H is a graph with ny vertices and m; edges.
Theorem 3.1 Let G,,G,,...,G, be simple connected graphs with R — numbers R,,R,,..., R,

respectively and let |V (G;)|=n; ThenR(G, UG, U...UG,)=R, +R, +..+ R, k>2.

Proof
Since any R — labeling is one — one, we cannot reuse the label of any vertex in G;, to

a vertex in G, for all i, j, 1<i= j<k. Hence R(G,UG,U..UG,)=R, +R, +..+R,.
Also, since G, is disjoint from G,, the minimum possible labels for the vertices of G, should

be R +LR +2,..,R +R,. Proceeding like this, we obtain
R(G, UG, U..UG,)<R, +R, +...+ R, . This completes the proof. |
Theorem 3.2. R(G + H) = R(G) + R(H)+1.

Proof

LetV(G)={vi:1<i<ni}andletV (H)={ui: 1<i<n}.

ThenV (G+H) =V (G)uV (H) and E(G+H) = E(G)UE(H)U {viuj: 1 <i<niand 1 <j <
n2}. Let f and g be R(G) and R(H) labelings of G and H, respectively. Thendefineh :V
(G+H) — {1,2,3, ...} suchthath(vi) =f(vi), 1L <i<niand h(uj) = g(uj)+R(H)+1,1<j <n2.
Sincede+H(Vvi, Uj)) =1, 1 <i<nrand1<j < nzand |h(vi)—h(uj)| = |F (vi)—(9(uj)+R(H)+1)|
>R(H)+1> 2, his an R— labeling of G + H. Also, hr = R(G) + R(H) + 1. This implies
that, R(G +H) < R(G) +R(H) +1. Suppose there exists an R— labeling ¢ of G +H such that
R(G +H) =R(G)+R(H). Then we can find a pair (vi, uj) such that |c(vi)—c(u;)| =1, which isa
contradiction that c is an R— labeling. This forces that, R(G +H) > R(G) +R(H) + 1. Hence

R(G +H) =R(G)+R(H) +1. [
From this result, we deduce the following:
Corollary 3.3

Form>n>1,R(Knn)=m+n+1.
Theorem 3.4. For any graph G on n > 3 vertices, R(S(G)) = R(G) + n.
Proof
Letf beanR — labelingof G andletV (G) ={vi : 1 < i <n} suchthat f (v)=R(G).
Then V (S(G)) =V (G)U{v;" : 1 <i<n}and E(S(G)) = E(G)U{v;"u:u € Na(vi)}.
Now, define g : V (S(G)) —{1,2,3,...} suchthatg(vi)=f(vi), 1<i<n;g(v;")= f(vi)+
1, 1 <i<n. Here, we have ds)(vi, v;") = 2. Then |g(vi)—g(v;")| = [F(vi)—(F(vi)+i)| > 1 and
l9(vi) = g(v;")| = [i = j| = 1. This forces that, g is an R— labeling of S(G) and ¢y (5619 (V) =
R(G) +n and hence R(S(G)) < R(G) + n. Since dg() (v, v;") = 2, distinct n positive
integers R(G)+1, R(G)+2,..., R(G)+n are enough to label the vertices of V (S(G)) —V (G).
Hence R(S(G)) > R(G) + n.
This completes the proof. |
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Theorem 3.5. For any graph G on n > 3 vertices, R(CS(G)) = R(G) + n.
Proof

Let f be an R — labeling of G and let V(G)={v, :1<i<n}such that f (v,)=R(G)and
v,V, e E(G). Then V(CS(G))=V(G) u{v;" : 1 < i < n} and E(CS(G)) = E(G) U
{ v;'u:u¢Ng(vi)}.

Define h:V(CS(G)) »{1,2,3,..} such that h(vi) = f(vi), 1 <i <n; h(v;") = R (G)+2;
h(v,") = R (G)+1; h(v;") = R (G)+3,3<i < n. Here, we have |h(v,)—h(v,")|=1and
Ih(v;") =h(v;")| =1. Thus h is an R — labeling of CS(G). Also, h, =R(G) +n and hence
R(CS(G))<R(G)+n. Since dcgq (v;',v;") =2, distinct n positive integers R(G)+1,
R(G)+2,..., R(G)+n are enough to label the vertices of V(CS(G)) — V(G). Hence
R(CS(G)) = R(G) +n. This completes the proof. [ |
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