Variance Of Time To Recruitment In A Single Grade Marketing Organization With NonInstantaneous Exits And Dependent Wastage Having Two Thresholds

G. Ravichandran ${ }^{1}$, A. Srinivasan ${ }^{2}$
${ }^{1}$ Assistant Professor in Mathematics, SRM TRP Engineering College(SRM GROUP), Irungalur, Trichy-621 105, Tamil Nadu, India.
${ }^{2}$ Former Associate Professor PG and Research Department of Mathematics Bishop Heber College Trichy-620 017 Tamil Nadu, India.
Email id: ${ }^{1}$ mathgravi@gmail.com, ${ }^{2}$ mathsrinivas@yahoo.com

Abstract

Attrition occur whenever a marketing organization(manpower system) takes policy decisions such as revision of targets and pay structure. It is not wise to make recruitment frequently due to cost factor. Since decision and its consequences are not predictable, an appropriate policy for recruitment becomes necessary. In this paper, for a single grade manpower system with non-instantaneous exits due to policy decisions, variance of time to recruitment is obtained using a suitable policy for recruitment when (i) the system has an additional control limit for alertness and a breakdown threshold for cumulative wastage (ii) wastage due to exits form a sequence of exchangeable and constantly correlated exponential random variables or an order statistics is associated with the wastage process or wastage process is a geometric process (iii) the inter-policy decision times form a sequence of exchangeable and constantly correlated exponential random variables and (iv) the inter-exit times are independent and identically distributed random variables. The analytical results are numerically illustrated and relevant findings are presented.

Keywords- Single grade marketing organization, non-instantaneous exits, correlated wastage, order statistics, geometric process, policy for recruitment, control limit for alertness and breakdown threshold and variance of time to recruitment.

AMS Subject Classification: 60H30, 60K05, 90B70, 91D35

1. INTRODUCTION

Depletion of manpower due to policy decisions takes place in any manpower system. As recruitment involves cost frequent recruitment will not be a remedy for balancing the manpower loss. Hence the cumulative wastage is allowed till it reaches a level, called the breakdown (mandatory) threshold. As in the case of shock model approach for replacement of systems in reliability theory, recruitment is done in the system when the cumulative
wastage exceeds this threshold. In [1, 2, 3] the authors have studied Markovian and renewal theoretic stochastic manpower models using suitable statistical techniques. In [4] the author has considered a single grade manpower system with non-instantaneous exits, only one control limit (mandatory threshold) for cumulative wastage and studied the problem of time to recruitment under different conditions on wastage, policy decisions and thresholds. In [5] the author has introduced an alertness level as an optional control limit (optional threshold) prior to the mandatory threshold and studied the problem of time to recruitment under different conditions on wastage, policy decisions and thresholds. Since exits are not always instantaneous, by considering separate epochs for policy decisions and exits in [7], the authors have determined the variance of time to recruitment from the Laplace transform of its density function when the inter-decision times and wastage process independently form sequences of independent exponential random variables using a recruitment policy involving two control limits. In [8] the authors have studied the work of [7] when the inter-decision times are correlated. In $[9,10]$ the authors have obtained variance of time to recruitment when the wastage process is correlated or order statistics is associated with wastage process and the inter-decision times form a geometric process and an order statistics, thereby extended the work in [5] for a manpower system with non-instantaneous exits. Recently, in [11] the authors have extended their work in [10] when wastage form a geometric process. The present paper extends the work of the authors in [8] when the wastage process is correlated or order statistics is associated with wastage process or form a geometric process.

2. MODEL DESCRIPTION

Assume that a single grade manpower system takes policy decisions at random epochs in $(0, \infty)$ and a random number of personnel quit this system leading to wastage in manpower. It is assumed that the exits are not instantaneous and wastage in manpower is linear and cumulative. Let X_{i} be the continuous random variable representing the wastage in manpower caused at the $i^{t h}$ exit point and S_{k} be the cumulative wastage in manpower in the first k exit points. It is assumed that $\left\{X_{i}\right\}_{i=1}^{\infty}$ form a sequence of exchangeable and constantly correlated exponential random variables or an order statistics where the sample of size r associated with this order statistics is selected from an exponential population with the common distribution is $M(t)=1-e^{-\alpha t}, \alpha>0$ or a geometric process. Let U_{k} be the continuous random variable representing the time between the $(\mathrm{k}-1)^{\text {th }}$ and $\mathrm{k}^{\text {th }}$ policy decisions. It is assumed that $\left\{U_{k}\right\}_{k=1}^{\infty}$ form a sequence of exchangeable and constantly correlated exponential random variables with mean $\frac{1}{\lambda},(\lambda>0)$ and correlation $R,-1 \leq R<1$. Let W_{i} be the continuous random variable representing the time between the $(\mathrm{i}-1)^{\text {th }}$ and $\mathrm{i}^{\text {th }}$ exits. Let $N_{e}(t)$ be the number of exit points lying in $(0, t]$. It is assumed that $N_{e}(t)$ is independent of X_{i} for each i and for all $t>0$. Let Y be the optional threshold level for the cumulative wastage in the system with probability density function $h_{1}($.$) , following an exponential distribution with mean$ $\frac{1}{\theta_{1}},\left(\theta_{1}>0\right)$. Let $\mathrm{Z}(\mathrm{Y}<\mathrm{Z})$ be the mandatory threshold level for the cumulative wastage in the system with probability density function $h_{2}($.$) , following an exponential distribution with$
mean $\frac{1}{\theta_{2}},\left(\theta_{2}>0\right)$. The organization may or may not go for recruitment when the cumulative wastage exceeds Y . It is assumed that the organization makes recruitment with probability ' p ' when the cumulative wastage exceeds Y. It is also assumed that policy decisions produce exit with probability ' q ' $(q \neq 0)$. Let T be the random variable denoting the time to recruitment with probability distribution function $L($.$) , density function l($.$) , mean \mathrm{E}(\mathrm{T})$ and variance $\mathrm{V}(\mathrm{T})$. Let $\bar{a}($.$) be the Laplace transform of a($.$) . Regarding the policy of recruitment, it is to$ be noted that when the cumulative wastage in manpower exceeds Y , the organization has the option to go or not to go for recruitment. However, recruitment is to be done when this cumulative wastage exceeds Z .

3. MAIN RESULT

From the recruitment policy, the tail distribution of time to recruitment is given by
$P[T>t]=P\left(\widetilde{X_{N_{e}(t)}} \leq Y_{1}\right)+p P\left(Y_{1}<\widetilde{X_{N_{e}(t)}} \leq Z_{1}\right)$.
(1)

Conditioning upon $N_{e}(t)$ from(1), we get
$P[T>t]=\sum_{k=0}^{\infty} P\left[N_{e}(t)=k\right] P\left(\widetilde{X_{k}} \leq Y_{1}\right)+p \sum_{k=0}^{\infty} P\left[N_{e}(t)=k\right] P\left(\widetilde{X_{k}}>Y_{1}\right) P\left(\widetilde{X_{k}} \leq Z_{1}\right)$
We now determine variance of time to recruitment for three different cases on wastage process.
Case (i): $\left\{X_{i}\right\}_{i=1}^{\infty}$ form a sequence of exchangeable and constantly correlated exponential random variable

$$
\text { with mean } \frac{1}{\alpha},(\alpha>0) \text { and correlation } \rho,-1 \leq \rho<1 \text {. }
$$

Since Y_{1} and $\widetilde{X_{k}}$ are independent, by conditioning upon Y_{1} and using the result of [Gurland, (1995)],
it can be shown that
$P[T>t]=(1-\rho) \sum_{k=0}^{\infty} a_{k}\left(G_{\widetilde{W_{k}}}(t)-G_{\widetilde{W_{k+1}}}(t)\right)$.
(3)
where
$a_{k}=A_{k}+p B_{k}\left(1-(1-\rho) A_{k}\right)$.
Here

$$
A_{k}=\frac{\left(u \theta_{1}+1\right)}{\left(u \theta_{1}+1\right)^{k}\left[(1-\rho+k \rho)\left(u \theta_{1}+1\right)-k \rho\right]}
$$

and

$$
B_{k}=\frac{\left(u \gamma_{1}+1\right)}{\left(u \gamma_{1}+1\right)^{k}\left[(1-\rho+k \rho)\left(u \gamma_{1}+1\right)-k \rho\right]} .
$$

Since $l_{T}(t)=-\frac{d}{d t} P[T>t]$ and using convolution theorem for Laplace transform we get
$\overline{l_{T}}(s)=(\rho-1)\left(1-\overline{g_{\mathrm{w}}}(s)\right) \sum_{k=0}^{\infty} a_{k}\left(\overline{g_{\mathrm{w}}}(s)\right)^{k}$.
(4)

An explicit result connecting the distributions of inter-exit times and inter-policy decision times is given by

$$
G_{w}(x)=q \sum_{n=1}^{\infty}(1-q)^{n-1} F_{\widetilde{U_{n}}}(x) .
$$

(5)

From (5) we get
${\overline{g_{W}}}^{\prime}(0)=-\frac{v}{(1-R) q}$, where ${\overline{f_{U_{n}}}}^{\prime}(0)=-\frac{n}{\lambda}$ and $v=(1-R) / \lambda$.
(6)
and
${\overline{g_{w}}}^{\prime \prime}(0)=q \sum_{n=1}^{\infty}(1-q)^{n-1}{\overline{f_{U_{n}}}}^{\prime \prime}(0)$.
(7)

Again using the result of [Gurland, (1995)], it can be shown that
${\overline{g_{W}}}^{\prime \prime}(0)=\frac{2 v^{2}}{(1-R)^{2} q^{2}}\left[1+(1-q) R^{2}\right]$.
(8)

It is known that $E\left(T^{r}\right)=(-1)^{r}\left[\frac{d^{r}}{d s^{r}} \overline{l_{T}}(s)\right]_{s=0}, r=1,2,3, \ldots$
(9)

From (4), (6) and (9) we get

$$
E(T)=K_{1} \frac{(1-\rho) v}{(1-R) q}
$$

(10)

From (4), (6), (8) and (9) we get
$E\left(T^{2}\right)=2(1-\rho)\left(\frac{v}{(1-R) q}\right)^{2}\left[K_{1}\left\{1+(1-q) R^{2}\right\}+K_{2}\right]$.
where $K_{1}=\sum_{k=0}^{\infty} a_{k}$ and $K_{2}=\sum_{k=0}^{\infty} k a_{k}$.
Equation (11) together with (10) give variance of time to recruitment for Case(i).

Case(ii): $\left\{X_{i}\right\}_{i=1}^{\infty}$ form an order statistics with $M_{X_{(j)}}$ (.) and $m_{X_{(j)}}$ (.) are the distribution and the probability density function of the $j^{\text {th }}$ order statistics selected from the sample of size r from an exponential population. From the theory of order statistics [10], it is known that $m_{X_{(t)}}(t)=j\binom{r}{j}\left[M_{X}(t)\right]^{j-1} m_{X}(t)\left[1-M_{X}(t)\right]^{r-j}, j=1,2, . . . r$.
(12)

Suppose $m_{X}(t)=m_{X_{(1)}}(t)$.
By proceeding as in Case(i) we get

$$
\begin{align*}
P[T>t]=1 & +\left(K_{5}-1\right) \sum_{k=1}^{\infty} G_{\widetilde{W_{k}}}(t) K_{5}^{k-1} \\
& +p\{1 \\
& +\left(K_{6}-1\right) \sum_{k=1}^{\infty}\left[G_{\widetilde{W_{k}}}(t) K_{6}^{k-1}-\left[1+\left(K_{5} K_{6}-1\right)\right] \sum_{k=1}^{\infty}\left[G_{\widetilde{W_{k}}}(t)\right]\left(K_{5} K_{6}\right)^{k-1}\right\} . \tag{13}
\end{align*}
$$

$\overline{l_{T}}(s)=\left(1-K_{5}\right) \overline{g_{W}}(s) \sum_{k=1}^{\infty}\left(K_{5} \overline{g_{W}}(s)\right)^{k-1}+p\left\{\left(1-K_{6}\right) \overline{g_{W}}(s) \sum_{k=1}^{\infty}\left(K_{6} \overline{g_{W}}(s)\right)^{k-1}-\left(1-K_{5} K_{6}\right) \overline{g_{W}}(s) \sum_{k=1}^{\infty}\left(K_{5} K_{6} \overline{g_{W}}(s)\right)^{k-1}\right\}$.

$$
\begin{equation*}
E(T)=K_{7} \frac{v}{(1-R) q} . \tag{14}
\end{equation*}
$$

and
$E\left(T^{2}\right)=\frac{2 v^{2}}{(1-R)^{2} q^{2}}\left[K_{7}\left\{1+(1-q) R^{2}\right\}+K_{8}\right]$.
(16)

Here the constants in (15) and (16) are given below:
$K_{5}=\frac{\alpha r}{\alpha r+\theta_{1}}$ and $K_{6}=\frac{\alpha r}{\alpha r+\gamma_{1}}$.
$K_{7}=\left[\frac{1}{\left(1-K_{5}\right)}+p\left\{\frac{1}{\left(1-K_{6}\right)}-\frac{1}{\left(1-K_{5} K_{6}\right)}\right\}\right]$.
(17)
i.e $K_{7}=\frac{\left(\alpha r+\theta_{1}\right)}{\theta_{1}}+\frac{p\left(\alpha r+\gamma_{1}\right) \alpha r \theta_{1}}{\gamma_{1}\left[\alpha r\left(\theta_{1}+\gamma_{1}\right)+\theta_{1} \gamma_{1}\right]}$.
$K_{8}=\frac{K_{5}}{\left(1-K_{5}\right)^{2}}+p\left\{\frac{K_{6}}{\left(1-K_{6}\right)^{2}}-\frac{K_{5} K_{6}}{\left(1-K_{5} K_{6}\right)^{2}}\right\}$.
(18)
i.e $K_{8}=\alpha r\left[\frac{\left(\alpha r+\theta_{1}\right)}{\theta_{1}{ }^{2}}+p\left(\alpha r+\gamma_{1}\right)\left(\frac{1}{\gamma_{1}{ }^{2}}-\frac{\alpha r\left(\alpha r+\theta_{1}\right)}{\left(\alpha r\left(\theta_{1}+\gamma_{1}\right)+\theta_{1} \gamma_{1}\right)^{2}}\right)\right]$.

Equation (16) together with (15) give variance of time to recruitment when $m_{X}(t)=m_{X_{(1)}}(t)$.
Suppose $m_{X}(t)=m_{X_{(r)}}(t)$.

By proceeding as in Case(i) we get
$E(T)=K_{7} \frac{v}{(1-R) q}$.
and
$E\left(T^{2}\right)=\frac{2 v^{2}}{(1-R)^{2} q^{2}}\left[K_{7}\left\{1+(1-q) R^{2}\right\}+K_{8}\right]$.
(20)
$K_{9}=\frac{(r)!\alpha^{r}}{\left(\theta_{1}+\alpha\right)\left(\theta_{1}+2 \alpha\right) \ldots\left(\theta_{1}+r \alpha\right)}$.
(21)
$K_{10}=\frac{(r)!\alpha^{r}}{\left(\gamma_{1}+\alpha\right)\left(\gamma_{1}+2 \alpha\right) \ldots\left(\gamma_{1}+r \alpha\right)}$.
(22)

Here (21) and (22) give the values of K_{5} and K_{6} in K_{7} and K_{8}.
Equation (20) together with (19) give variance of time to recruitment when $m_{X}(t)=m_{X_{(r)}}(t)$.
Case(iii): $\left\{X_{i}\right\}_{i=1}^{\infty}$ form a geometric process with rate d and we assume X_{1} to follow an exponential distribution

$$
\text { with mean } \frac{1}{\alpha}, \alpha>0 \text {. }
$$

By proceeding as in Case(i) we get

$$
\begin{align*}
& \mathrm{P}[\mathrm{~T}>t]=\sum_{\mathrm{k}=0}^{\infty}\left[\mathrm{G}_{\widetilde{\mathrm{W}_{\mathrm{k}}}}(\mathrm{t})-\mathrm{G}_{\widetilde{\mathrm{W}_{\mathrm{k}+1}}}(\mathrm{t})\right] \overline{\mathrm{m}_{\widetilde{X_{\mathrm{k}}}}}\left(\theta_{1}\right) \\
&+p \sum_{k=0}^{\infty}\left[G_{\widetilde{W_{k}}}(t)-G_{\widetilde{W_{k+1}}}(t)\right]\left[\overline{m_{\overline{X_{k}}}}\left(\gamma_{1}\right)-\overline{m_{\widetilde{X_{k}}}}\left(\theta_{1}\right) \overline{m_{\widetilde{X_{k}}}}\left(\gamma_{1}\right)\right] . \tag{23}
\end{align*}
$$

$\overline{l_{T}}(s)=\left[\overline{\mathrm{g}_{\mathrm{W}}}(\mathrm{s})-1\right] \sum_{\mathrm{k}=0}^{\infty}\left(\overline{\mathrm{g}_{\mathrm{W}}}(\mathrm{s})\right)^{\mathrm{k}} b_{k}$.
where

$$
\begin{equation*}
b_{k}=\left[\overline{m_{\widetilde{\mathrm{k}_{\mathrm{k}}}}}\left(\theta_{1}\right)+p \overline{m_{\widetilde{x_{k}}}}\left(\gamma_{1}\right)\left(1-\overline{m_{\widetilde{x_{k}}}}\left(\theta_{1}\right)\right)\right], k=0,1,2 \ldots \tag{24}
\end{equation*}
$$

and
$\overline{m_{\widetilde{X_{k}}}}\left(\theta_{1}\right)=\alpha \prod_{i=1}^{k}\left(\frac{d^{i-1}}{\theta_{1}+\alpha d^{i-1}}\right), \overline{m_{\widetilde{X_{k}}}}\left(\gamma_{1}\right)=\alpha \prod_{i=1}^{k}\left(\frac{d^{i-1}}{\gamma_{1}+\alpha d^{i-1}}\right)$.

Vol 12, Issue 02, 2021

$$
\begin{equation*}
E(T)=K_{11}\left(\frac{v}{(1-R) q}\right) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(T^{2}\right)=\frac{2 v^{2}}{(1-R)^{2} q^{2}}\left[\left\{1+(1-q) R^{2}\right\} K_{11}+K_{12}\right] \tag{26}
\end{equation*}
$$

where $K_{11}=\sum_{k=1}^{\infty} b_{k}$ and $K_{12}=\sum_{k=1}^{\infty} k b_{k}$ and (24) gives the values of $b_{k}{ }^{\prime} s$ in K_{11} and K_{12}.
Equation (26) together with (25) give variance of time to recruitment for Case(iii).

4. NUMERICAL ILLUSTRATION

The influence of nodal parameters on the performance measures namely mean and the variance of time to recruitment are studied numerically for all the three Cases.
Case(i):
Effect of ρ and R on the performance measures by fixing all the other parameters $\alpha=0.5, \lambda=0.3, \theta_{1}=0.6, \gamma_{1}=0.4, \mathrm{p}=0.5$ and $\mathrm{q}=0.5$ are given below.

Table-1

ρ	R	$\mathrm{E}(\mathrm{T})$	$\mathrm{V}(\mathrm{T})$
-0.3	0.6	16.358	889.574
-0.4	0.6	15.667	722.275
-0.5	0.6	15.479	679.853
0.5	-0.4	16.386	844.042
0.6	-0.4	17.037	945.744
0.7	-0.4	18.035	1119.929
-0.3	0.7	16.358	917.927
-0.3	0.8	16.358	950.642
-0.3	0.9	16.358	987.719
0.5	-0.6	16.386	887.739
0.5	-0.7	16.386	916.141
0.5	-0.8	16.386	948.914

Case(ii):
Effect of R and r on the performance measures by fixing all the other parameters $\alpha=0.5, \lambda=0.3, \theta_{1}=0.6, \gamma_{1}=0.4, \mathrm{p}=0.5$ and $\mathrm{q}=0.5$ are given below.

Table-2

R	$m_{X}(t)=m_{X_{(1)}}(t)$	$m_{X}(t)=m_{X_{(r)}}(t)$			
		$\mathrm{E}(\mathrm{T})$	$\mathrm{V}(\mathrm{T})$	$\mathrm{E}(\mathrm{T})$	$\mathrm{V}(\mathrm{T})$
0.5	4	39.603	1547.682	10.514	135.229

	5	47.674	2252.140	9.664	113.322
	6	55.741	3089.163	9.132	100.993
0.6	4	39.603	1576.724	10.514	142.940
	5	47.674	2287.101	9.664	120.409
	6	55.741	3130.040	9.132	107.690
	4	39.603	1611.047	10.514	152.051
	5	47.674	2328.419	9.664	128.785
	6	55.741	3178.348	9.132	115.604
	4	39.603	1650.650	10.514	162.565
	5	47.674	2376.093	9.664	138.449

Case(iii):
Effect d and R on the performance measures by fixing all the other parameters $\alpha=0.5$, $\lambda=0.3, \theta_{1}=0.6, \gamma_{1}=0.4, \mathrm{p}=0.5$ and $\mathrm{q}=0.5$ are given below.

Table-3

d	$R=-0.4$		$R=0.5$		$R=0.6$	
	$\mathrm{E}(\mathrm{T})$	$\mathrm{V}(\mathrm{T})$	$\mathrm{E}(\mathrm{T})$	$\mathrm{V}(\mathrm{T})$	$\mathrm{E}(\mathrm{T})$	$\mathrm{V}(\mathrm{T})$
0.80	15.190	561.497	15.190	570.611	15.190	581.750
0.85	18.037	723.256	18.037	734.078	18.037	747.305
0.90	22.637	1003.317	22.637	1016.899	22.637	1033.500
1	42.804	2081.829	42.804	2113.219	42.804	2056.146
1.02	48.540	2268.481	48.540	2304.077	48.540	2239.357
1.04	53.766	2374.228	53.766	2413.656	53.766	2341.968

5. FINDINGS

From the above tables, the following observations are presented which agree with reality. From the Table-1, we find that

1. When ρ increases and keeping all the other parameters fixed, the mean and variance of time to recruitment increase.
2. When R increases and keeping all the other parameters fixed, the mean of time to recruitment remains unchanged and variance of time to recruitment increases.

From the Table-2, we find that

1. When r increases and keeping all the other parameters fixed, the mean and variance of time to recruitment increase for the case $m_{X}(t)=m_{X_{(1)}}(t)$. But, the mean and variance of
time to recruitment decrease for the case $m_{X}(t)=m_{X_{(r)}}(t)$.
2. When R increases and keeping all the other parameters fixed, the mean of time to recruitment remains unchanged and variance of time to recruitment increases for both the cases $m_{X}(t)=m_{X_{(1)}}(t)$ and $m_{X}(t)=m_{X_{(t)}}(t)$.

From the Table-3, we find that

1. When d (either $d<1$ or $d \leq 1$) increases and keeping all the other parameters fixed, the mean and variance of time to recruitment increase.
2. When R increases, either $d<1$ or $d \geq 1$ and keeping all the other parameters fixed, the mean of time to recruitment remains unchanged and variance of time to recruitment increases.

6. CONCLUSION

The present work contributes to the existing literature in the sense that the models discussed in this paper are new in the context of considering (i) Non -instantaneous exits (ii) a chance factor for any decision to have exit points and (iii) provision of an alertness level as an additional control limit. The assumption on the non -instantaneous exits gives a provision for elongating the time to recruitment to a desirable limit.

Acknowledgement

The first author gratefully acknowledges the managements of Bishop Heber College (Autonomous), Trichy-17 and SRM TRP Engineering College, Trichy-621 105 for their moral support and encouragement.

7. REFERENCES

[1] D. J. Bartholomew, Stochastic model for social processes, New York, John Wiley and Sons, 1973.
[2] D. J. Bartholomew, F. Andrew Forbes, Statistical techniques for manpower planning, New York, John Wiley and Sons, 1979.
[3] R. C. Grinold, K. T. Marshall, Manpower planning models, New York, North-Holland, 1977.
[4] A. Devi, A probabilistic analysis on time to recruitment for a single grade manpower system with different epochs for decisions and exits, Ph.D. thesis, Bharathidasan University, Tiruchirappalli, 2019.
[5] J. B. Esther Clara, Contributions to the study on some stochastic models in manpower planning, Ph.D. thesis, Bharathidasan University, Tiruchirappalli, 2012.
[6] J. Medhi, Stochastic processes, Wiley Eastern, second edition, New Delhi, 1994.
[7] G. Ravichandran, A. Srinivasan, Variance of time to recruitment for a single grade manpower system with two thresholds having different epochs for decisions and exits, Indian Journal of Applied Research, 5(1), pp. 60-64, 2015.
[8] G. Ravichandran, A. Srinivasan, Time to recruitment for a single grade manpower system with two thresholds, different epochs for exits and correlated decision times, International Research Journal of Natural and Applied Sciences, 2(2), 129-138, 2015.
[9] G. Ravichandran, A. Srinivasan, Time to recruitment for a single grade manpower system with two thresholds, different epochs for decisions and exits having correlated wastages, IOSR Journal of Mathematics, 13(4), pp. 38-42, 2017.
[10] G. Ravichandran, A. Srinivasan, Moments of time taken for recruitment in a single grade marketing organization with non-instantaneous exits and dependent manpower loss having two thresholds, International Journal of Pure and Applied Mathematics, 118(20), pp. 1321-1326, 2018.
[11] G. Ravichandran, A. Srinivasan, Moments of time taken for recruitment in a single grade marketing organization with wastages as a geometric process, non-instantaneous exits and two thresholds, International Journal of Analytical and Experimental Modal Analysis, 11(10), pp. 1002-1008, 2019.

