Isolated Signed Total Dominating Function Of Graphs

Sunitha S^{1}, Dr. S. Chandra Kumar ${ }^{2}$,
${ }^{1}$ Research Scholar, Reg. No. : 17223162092041, Dept. of Mathematics,(M S University, Tirunelveli) Scott Christian College, Nagercoil, 629003, Tamil Nadu, India,
${ }^{2}$ Associate Professor, Department of Mathematics, Scott Christian College, Nagercoil, 629003, Tamil Nadu, India
Email: ${ }^{1}$ sunithasuni86659@gmail.com, ${ }^{2}$ kumar.chandra82@yahoo.in

Abstract

An isolated signed total dominating function (ISTDF) of a graph G is a function $f: V(G) \rightarrow\{-1,+1\}$ such that ${ }^{\mathrm{P}} f(u) \geq 1$ for every vertex $v \in V(G)$ and for at $u \in N(v)$ least one vertex of $w \in V(G), f(N(w))=+1$. An isolated signed total domination number of G, denoted by $\gamma_{i s t}(G)$, is the minimum weight of an isolated signed total dominating function of \boldsymbol{G}. In this paper, we study some properties of ISTDF.

Key Words: isolated domination, signed dominating function, isolated signed dominating function, isolated signed total dominating function.

1. INTRODUCTION

Throughout this paper, we consider only finite, simple and undirected graphs. The set of vertices and edges of a graph $G(p, q)$ will be denoted by $V(G)$ and $E(G)$ respectively, $p=\mid V$ $(G) \mid$ and $q=|E(G)|$. For graph theoretic terminology, we follow [7].
For $v \in V(G)$, the open neighborhood of v is $N_{G}(v)=\{u \in V: u v \in E(G)\}$ and the closed neighborhood of v is $N_{G}[v]=\{v\} \cup N(v)$. The degree of v is $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. The minimum

$$
\delta(G)=\min _{v \in V(G)}\{\operatorname{deg}(v)\} \text { and } \Delta(G)=\max \{\operatorname{deg}(v)\}
$$ and maximum degree of G is defined by respectively. A vertex of degree one is $v \in V(G)$

called a pendent vertex. A vertex which is adjacent to a pendent vertex is called a stem.
A function $f: V(G) \rightarrow\{0,1\}$ is called a dominating function if for every vertex $v \in V(G)$, $f(N[v]) \geq 1[8]$. The weight of f, denoted by $w(f)$ is the sum of the values $f(v)$ for all $v \in V(G)$.
Various domination functions has been defined from the definition of dominating function by replacing the co-domain $\{0,1\}$ as one of the sets $\{-1,0,1\},\{-1,+1\}$ and etc. One of such example is signed dominating function $[3,4]$.
In 1995, J.E.Dunbar et al. [4] defined signed dominating function. A function $f: V(G) \rightarrow$ $\{-1,+1\}$ is a signed dominating function of G, if for every vertex $v \in V(G), f(N[v]) \geq 1$. The signed domination number, denoted by $\gamma_{s}(G)$, is the minimum weight of a signed dominating
function on G [4]. The signed dominating function has been studied by several authors including $[1,2,5,6,9,10]$.
A subset S of vertices of a graph G is a total dominating set of G if every vertex in $V(G)$ has a neighbor in S. The minimum cardinality of a total dominating set of G is said to be the total domination number and is denoted by $\gamma_{t}(G)$. A subset S of vertices of a graph G is a 2 -total dominating set of G if every vertex in $V(G)$ has at least two neighbors in S. The minimum cardinality of a 2 total dominating set of G is said to be the total domination number and is denoted by $\gamma_{2, t}(G)$.
In 2016, Hameed and Balamurugan [11] introduced the concept of isolate domination in graphs. A dominating set S of a graph G is said to be an isolate dominating set if $\langle S\rangle$ has at least one isolated vertex [11]. An isolate dominating set S is said to be minimal if no proper subset of S is an isolate dominating set. The minimum and maximum cardinality of a minimal isolate dominating set of G are called the isolate domination number $\gamma_{0}(G)$ and the upper isolate domination number $\Gamma_{0}(G)$ respectively.
By using the definition of signed total dominating function and isolate domination, we introduced the concept of isolated signed total dominating function. An isolated signed total dominating function (ISTDF) of a graph G is a function $f: V(G) \rightarrow\{-1,+1\}$ such that ${ }^{\mathrm{P}} f(u) \geq$ 1 for every vertex $v \in V(G)$ and for at
$u \in N(v)$
least one vertex $w \in V(G), f(N(w))=+1$. An isolated signed total domination number of G, denoted by $\gamma_{\text {ist }}(G)$, is the minimum weight of an isolated signed total dominating function of G. In this paper, we study some properties of ISTDF and we give isolated signed total domination number some classes of graphs.

2. MAIN RESULTS

Lemma 1. Let G be any graph in which deg(v) is even for all $v \in V(G)$. Then G does not admit ISTDF.
Proof. Note that $|N(u)|$ is even for any vertex $u \in V(G)$. Thus there exist no vertex $u \in V(G)$ such that $f(N(u))=1$ for any function $f: V(G) \rightarrow\{-1,+1\}$.
Lemma 2. For any graph G which admits ISTDF, $\gamma_{s t}(G) \leq \gamma_{i s t}(G)$.
Proof. Since every ISTDF is a STDF, it follows that $\gamma_{s t}(G) \leq \gamma_{i s t}(G)$.
In [12], Bohdan Zelinka and Liberec proved the following result which gives an lower bound for STDN of regular graphs.
Theorem 3. [12] Let G be a regular graph of degree r. If r is odd, then $\gamma_{s t}(G) \geq \frac{n}{r}$; if r is even, then $\gamma_{s t}(G) \geq \frac{2 n}{r}$.
Theorem 4. Let G be an odd regular graph of degree $r(\geq 3)$, then $\gamma_{i s t}(G) \geq \frac{n}{r}$.
Proof. Let $u \in V(G)$ and $r=2 `+1$ for some integer ${ }^{`} \geq 1$. Define a function $f: V(G) \rightarrow$ $\{-1,+1\}$ by labeling any of the `neighbors of u by -1 sign and all the remaining vertices of G by +1 sign. Then f is an ISTDF and $f(N(u))=1$. This means that any odd regular graph of degree $r(\geq 3)$ must admits ISTDF. Thus from Lemma 2 and theorem 3, we can have the result. \square
Lemma 5. When n is even, $\gamma_{i s t}\left(K_{n}\right)=2$ for n even.
Proof. By Theorem 4, $\gamma_{i s t}(G) \geq \frac{n}{r}=\frac{n}{n-1}$. This means that $\gamma_{i s t}>1$ and so $\gamma_{\text {ist }} \geq 2$.
Define a function $f: V(G) \rightarrow\{-1,+1\}$ by labeling any of the $\frac{n}{2}+1_{\text {vertices of }} G$ by +1
sign and all the remaining $\frac{n}{2}-1$ vertices of G by -1 sign. Then f is an ISTDF and $f(N(u))$
$=1$ for any vertex which received the label +1 . Also $w(f)=(+1)\left(\frac{n}{2}+1\right)+(-1)\left(\frac{n}{2}-1\right)=2$ ans so $\gamma_{i s t}(G) \leq 2$.
Theorem 6. Let $n \geq 2$ be an integer and let G be a disconnected graph with n components $G_{1}, G_{2}, \ldots, G_{n}$ such that the first $r(\geq 1)$ components $G_{1}, G_{2}, \ldots, G_{r}$ admit ISTDF. Then $\gamma_{i s t}(G)=$ n
$\min \left\{t_{i}\right\}$, where $t_{i}=\gamma_{i s t}\left(G_{i}\right)+{ }^{\mathrm{P}} \gamma_{s t}\left(G_{j}\right)$.
$1 \leq i \leq r \quad j=1, j 6=i$
Proof. Assume that $t_{1}=\min \left\{t_{i}\right\}$.
$1 \leq i \leq r$
Let f_{1} be an minimum ISTDF of G_{1} and f_{i} be a minimum STDF of G_{i} for each i with $2 \leq i \leq n$. Then $f: V(G) \rightarrow\{-1,+1\}$ defined by

$$
{ }_{n}^{f}(x)=f_{i}(x), x \in V\left(G_{i}\right),
$$

is an $\gamma_{i s t}(G) \leq \gamma_{i s t}\left(G_{1}\right)+\sum_{i=2}^{n} \gamma_{s t}\left(G_{i}\right)=t_{1} \quad \begin{aligned} & \quad \begin{array}{l}n \\ \text { ISTDF of } G \text { with weight } \\ \gamma i s t(G 1)+\mathrm{P} \gamma s t(G i) \text { and so }\end{array}\end{aligned}$
$i=2$
Let g be a minimum ISTDF of G. Then there exists an integer j such that $\left.g\right|_{G j}$ is a minimum ISTDF of G_{j} for some j with $1 \leq j \leq r$.
Also for each i with $1 \leq i \leq n(i \neq j),\left.g\right|_{G_{i}}$ is a minimum STDF of
G_{i}. Therefore $w(g) \geq \gamma_{\text {ist }}\left(G_{j}\right)+{ }^{\mathrm{P}} \gamma_{s t}\left(G_{i}\right)=t_{j} \geq t_{1}$ and hence
$i=1, i 6=j$
$\gamma_{i s t}(G)=\min \left\{t_{i}\right\}$.
$1 \leq i \leq r$
Corollary 7. Let H be any graph which does not admit ISTDF. Then $G=H \cup r K_{2}(r \geq 1)$ admits ISTDF with $\gamma_{i s t}(G)=2 r+\gamma_{s t}(H)$
Proof. Let $G_{i} \sim=K_{2}$ for $1 \leq i \leq r$ and $G_{r+1} \sim=H$. Note every vertex of each copy of K_{2} receive the label +1 . Thus by Theorem 6, we have $\gamma_{\text {ist }}(G)=2 r+\gamma_{s t}(H)$.
Lemma 8. Let f be an ISTDF of G and let $S \subset V$. Then $f(S)=|S|(\bmod 2)$.
Proof. Let $S^{+}=\{v \mid f(v)=1, v \in S\}$ and $S=\{v \mid f(v)=-1, v \in S\}$. Then $\left|S^{+}\right|+|S|=|S|$ and $\left|S^{+}\right|-$ $\left|S^{-}\right|=f(S)$. If both S^{-}and S^{+}are either odd or even, then both $|S|$ and $f(S)$ must be even.
If either one of S^{-}and S^{+}is odd and another one is even, then both $|S|$ and $f(S)$ must be odd. Therefore $f(S)=|S|(\bmod 2)$.

Lemma 9. Let G be a graph of order n and $\delta \geq 2$. Then
$2 \gamma_{2, t}(G)-n \leq \gamma_{i s t}(G)$.
Proof. Let g be a minimum isolate signed total dominating function of G. Let $V^{+}=\{u \in V$: $g(u)=+1\}$ and $V^{-}=\{v \in V: g(v)=-1\}$. If $V^{-}=\varphi$, then the proof is clear.
Suppose there exists a vertex $v \in V^{-}$. Since $g(N(v)) \geq 1$ and $\delta \geq 2$, then v has at least two adjacent vertices in V^{+}. In the similarly manner, if $v \in V^{+}$, then v has at least two adjacent vertices in V^{+}.
Therefore V^{+}is a 2-total dominating set for G and so $\left|V^{+}\right| \geq \gamma_{2, t}(G)$. Since $\gamma_{i s t}(G)=\left|V^{+}\right|-\left|V^{-}\right|$ and $n=\left|V^{+}\right|+\left|V^{-}\right|$, we have $\gamma_{i s t}(G)=2\left|V^{+}\right|-n$ and so $\gamma_{\text {ist }}(G) \geq 2 \gamma_{2, t}(G)-n$. \square
Remark 10. (a) Let G be a graph which admits a 2-total dominating set S. Then $N(v) \subseteq S$ whenever $|N(v)|=2$ for any vertex $v \in V(G)$.
(a) Let G be a graph which admits an ISTDF function(or STDF), say f. Then the vertices of $N(v)$ are labeled with +1 sign whenever $|N(v)| \leq 2$ for any vertex $v \in V(G)$.
Remark 11. The inequality given in Lemma 9 is sharp. For example, consider the following graph G.

Every 2-total dominating set contain the vertices 2, 4, 6 and 8(by Remark 10(a)). Thus $\gamma_{2, t}(G)$ ≥ 4. Also $\{2,4,6,8\}$ is a 2 -total dominating set and so $\gamma_{2, t}(G) \leq 4$.
For every ISTDF f of G, it is true that $f(2)=f(4)=f(6)=f(8)=+1$ (by Remark $10(\mathrm{~b})$). Thus $\gamma_{\text {ist }}(G) \geq 0$. Now label the vertices of G by $g(2)=g(4)=g(6)=g(8)=+1$ and $g(1)=g(3)=$ $g(5)=g(7)=-1$. Then g is a ISTDF with $w(g)=0$ and so $\gamma_{i s t}(G) \leq 0$. Thus for the graph G, we have $2 \gamma_{2, t}(G)-n=2(4)-8=0=\gamma_{\text {ist }}(G)$.
4

8
Figure 1: G
Lemma 12. The complete bipartite graph $K_{m, n}=(A, B)$ admits ISTDF if and only if, either m or n is odd.
Proof. Suppose $K_{m, n}=(A, B)$ admits ISTDF, say f. On the contrary, suppose both m and n are even. In this case, for every vertex $v \in V(A), f(N(v))=f(B) \geq 2$ (Since n is even). Also for every vertex $v \in V(B), f(N(v))=f(A) \geq 2$ (Since m is even). Thus there does not exist a vertex such that $f(N(v))=1$, a contradiction.
Conversely suppose either m or n is odd. With out loss of generality, assume that m is odd. Define s function $f: V(G) \rightarrow\{+1,-1\}$ as follows. Label any $\frac{m+1}{2}$ vertices of $A\left(\left\lceil\frac{n+1}{2}\right\rceil\right.$ vertices of B) by +1 sign and label the remaining $\frac{m-1}{2} \operatorname{vertices}\left(\frac{n-1}{2}\right\rfloor$ vertices of B) of A by -1 sign. Then f is a SDF. Also $f(N(v))=\left(\frac{m+1}{2}\right)(+1)+\left(\frac{m-1}{2}\right)(-1)=1$ for all $v \in B$.
Remark 13. It is proved in the above lemma that the ISTDF for the complete bipartite graph $K_{m, n}$ does not exist when both m and n are even. When it admits ISTDF, the ISTD number is given by
$\gamma_{i s t}=2$ when both m and n are odd; and 3 if either m or n is even.
Theorem 14. For given integer $k \geq 1$, there exists a graph G such that $\gamma_{s t}(G)=\gamma_{i s t}(G)=k$.
Proof. Let G be a graph such that $V(G)=\left\{a_{1}, a_{2}, \ldots, a_{2 k}, b_{2}, b_{4}, b_{6}, \ldots, b_{2 k}\right\}$ and $E(G)=\left\{a_{i} a_{i+1} / 1\right.$ $\leq i \leq 2 k-1\} \cup\left\{a_{2 k} a_{1}\right\} \cup\left\{a_{2 i} b_{2 i}: 1 \leq i \leq k\right\}$.
Let f be a ISTDF of G. Then by Remark $10(\mathrm{~b}), f\left(a_{i}\right)=+1$ for all i with $1 \leq i \leq 2 k$. Thus $f(V$ $(G)) \geq 2 k(+1)+k(-1)=k$ and so $\gamma_{s t}(G) \geq k$.
Define a function $g: V(G) \rightarrow\{-1,+1\}$ by $g\left(a_{i}\right)=+1$ and $g\left(b_{i}\right)=-1$. Then g is a STDF such that $w(f)=k$ and $f\left(N\left(b_{2}\right)\right)=1$. Therefore $\gamma_{i s t}(G) \leq k$. Since $\gamma_{s t}(G) \leq \gamma_{i s t}(G)$, we have $\gamma_{s t}(G)=$ $\gamma_{i s t}(G)=k$.
Lemma 15. If $G=m K_{2} \cup B$, where B is a graph which is an union of cycles $(m \geq 1$ and B may be empty), then $\gamma_{i s t}(G)=n$.
Proof. Let f be an ISTDF of G and $u \in V(G)$.
Case 1: If $u \in V\left(m K_{2}\right)$, then by Remark $10(\mathrm{~b}), f(u)=+1$. Case 2: If $u \in V(B)$ then $|N(u)|=2$ and so by Remark $10(\mathrm{~b}), f(u)=+1$. Thus $w(f)=n$ and so $\gamma_{i s t}(G) \geq n$. But always $\gamma_{i s t}(G) \leq n$ and so $\gamma_{i s t}(G)=n$.
Remark 16. The converse of the above result is not true. Consider the following graph G. From Remark 10 (b), $f(u)=+1$ for any vertex $u \in V(G)$ and for any ISTDF f. Thus $\gamma_{i s t}(G) \geq n$. But always $\gamma_{i s t}(G) \leq n$ and so $\gamma_{i s t}(G)=n$.

b b b Figure 2: ${ }_{G} \quad \mathrm{~b} \quad \mathrm{~b}$
Remark 17. Let G be a graph of order n which admits ISTDF. Then $\gamma_{i s}(G) 6=n-1$.
Proof. Let f be a minimum ISTDF of G. Suppose $f(u)=+1$ for all $u \in V(G)$, then $\gamma_{i s t}(G)=n$. Suppose $f(u)=-1$ for some $u \in V(G)$, then $\gamma_{\text {ist }}(G) \leq n-2$. \square

3. REFERENCES

[1] G.J. Chang, S.-C. Liaw, H.-G. Yeh, k-Subdomination in graphs, Discrete Appl. Math. 120 (2002) 44-60.
[2] E.J. Cockayne and C.M. Mynhardt, On a generalization of signed dominating functions of graphs, Ars Combin., 43 (1996) 235-245.
[3] J. E. Dunbar, S. T. Hedetniemi, M. A. Henning, and A. A. McRae. Minus domination in regular graphs. Discrete Math., 149 (1996) 311-312.
[4] J.E. Dunbar, S.T. Hedetniemi, M. A. Henning and P. J. Slater, Signed domination in graphs. In: Graph Theory, Combinatorics and Applications. Proc. 7th Internat. conf. Combinatorics, Graph Theory, Applications, (Y. Alavi, A. J. Schwenk, eds.). John Wiley \& Sons, Inc., 1 (1995) 311-322.
[5] O. Favaron, Signed domination in regular graphs, Discrete Math., 158 (1996) 287-293.
[6] Z. Fredi and D. Mubayi,Signed domination in regular graphs and set-systems, J. Combin. Theory Series B, 76 (1999) 223239.
[7] F. Harary, Graph Theory, Addison-Wesley, (1969).
[8] T.W.Haynes, S.T.Hedetniemi and P.J.Slater "Fundamental of domination in graphs". Marcel Dekker inc...... New York-BaselHong Kong, 1998
[9] Huaming Xing, Langfang, Liang Sun, Beijing, and Xuegang Chen, Taian, On signed distance-k-domination in graphs, Czechoslovak Mathematical Journal, 56(131) (2006), 229-238.
[10] Z. Zhang, B. Xu, Y. Li and L. Liu, A note on the lower bounds of signed domination number of a graph, Discrete Math., 195 (1999), 295-298.
[11] I.Sahul Hamid, S.Balamurugan, Isolate domination in graphs, Arab J Math Sci., 22 (2016), 232-241.
[12] Bohdan Zelinka, Liberec, SIGNED TOTAL DOMINATION NUMBER OF A GRAPH, Czechoslovak Mathematical Journal, 51 (126) (2001), 225229

