1 - Quasi Total Single Valued Neutrosophic Graph And Its Properties

G.Divya ${ }^{1}$, Dr. J. Malarvizhi ${ }^{2}$, Dr. T. Geetha ${ }^{3}$
${ }^{1}$ Research Scholar, PG and Research Department of Mathematics, K.N.Govt. Arts College (Autonomous) for women,Thanjavur-7, Affliated to Bharathidasan University,Tamilnadu, India.
${ }^{2}$ Principal, Govt. Arts College, Ariyalur, Affliated to Bharathidasan University, Tamilnadu, India
${ }^{3}$ Assistant Professor, PG and Research Department of Mathematics, Affliated to Bharathidasan University,Tamilnadu, India.
K.N.Govt. Arts College (Autonomous) for women,Thanjavur - 7,
E-mail id: ${ }^{2}$ mathsdivya3@gmail.com

Abstract

In this paper we construct the 1 - Quasi Total Single valued Neutrosophic Graph of the given Single valued Neutrosophic Graph. Some properties and relationships are observed. Also the Isomorphic property in Single Valued Neutrosophic Line graph is observed.

Keywords - Single valued Neutrosophic Graph, Total Single valued Neutrosophic Graph, 1 - Quasi Total Single valued Neutrosophic Graph.

1. INTRODUCTION

Fuzzy set theory and intuitionistic fuzzy sets theory are useful models for dealing with uncertainty and incomplete information. But they may not be sufficient in modeling of indeterminate and inconsistent information encountered in real world. In order to cope with this issue, neutrosophic set theory was proposed by Smarandache as a generalization of fuzzy sets and intuitionistic fuzzy sets.
Neutrosophic set is a powerful tool to deal with incomplete, indeterminate and inconsistent information in real world. It is a generalization of the theory of fuzzy set , intuitionistic fuzzy sets , interval-valued fuzzy sets and interval-valued intuitionistic fuzzy sets, then the neutrosophic set is characterized by a truth-membershipdegree (T), an indeterminacymembership degree (I) and a falsity-membership degree (F)independently, which are within the real standard or nonstandard unit interval $]^{-} 0,1^{+}[$.
Properties and isomorphism of total and middle fuzzy graphs was given by Nagoorgani and Malarvizhi. Here, in this paper some properties of 1 - Quasi total Single valued Neutrosophic graphs is defined and isomorphic relation is discussed. Also the Isomorphic property in Single Valued Neutrosophic Line graph is observed.

Vol 12, Issue 02, 2021

2. PRELIMINARIES

A Single-Valued Neutrosophic graph(SVN graph) is a pair $G=(A, B)$ of the crisp graph $G^{*}=$ $(\mathrm{V}, \mathrm{E})($ i.e., with underlying set V$)$, where $\mathrm{A}: \mathrm{V} \rightarrow[0,1]$ is single-valued neutrosophic set in V and $\mathrm{B}: \mathrm{V} \times \mathrm{V} \rightarrow[0,1]$ is single-valued neutrosophic relation on V such that
$\mathrm{T}_{\mathrm{B}}(\mathrm{xy}) \leq \min \left\{\mathrm{T}_{\mathrm{A}}(\mathrm{x}), \mathrm{T}_{\mathrm{A}}(\mathrm{y})\right\}$,
$\mathrm{I}_{\mathrm{B}}(\mathrm{xy}) \leq \min \left\{\mathrm{I}_{\mathrm{A}}(\mathrm{x}), \mathrm{I}_{\mathrm{A}}(\mathrm{y})\right\}$,
$\mathrm{F}_{\mathrm{B}}(\mathrm{xy}) \leq \max \left\{\mathrm{F}_{\mathrm{A}}(\mathrm{x}), \mathrm{F}_{\mathrm{A}}(\mathrm{y})\right\}$
for all $x, y \in V$. A is called single-valued neutrosophic vertex set of G and B is called singlevalued neutrosophic edge set of G, respectively.
Given a single-valued neutrosophic graph $G=(A, B)$ of a crisp graph $G^{*}=(V, E)$, the order of G is defined as $\operatorname{Order}(G)=\left(O_{T}(G), \mathrm{O}_{\mathrm{I}}(\mathrm{G}), \mathrm{O}_{\mathrm{F}}(\mathrm{G})\right)$, where $\mathrm{O}_{\mathrm{T}}(\mathrm{G})=\sum_{\mathrm{v} \in \mathrm{V}} \mathrm{T}_{\mathrm{A}}(\mathrm{v})$, $\mathrm{O}_{\mathrm{I}}(\mathrm{G})=\sum_{\mathrm{v} \in \mathrm{V}} \mathrm{I}_{\mathrm{A}}(\mathrm{v}), \mathrm{O}_{\mathrm{F}}(\mathrm{G})=\sum_{\mathrm{v} \in \mathrm{V}} \mathrm{F}_{\mathrm{A}}(\mathrm{v})$.
Given a single-valued neutrosophic graph $G=(A, B)$ of a crisp graph $G^{*}=(V, E)$, the size of G is defined as $\operatorname{Size}(G)=\left(S_{T}(G), S_{I}(G), S_{F}(G)\right)$, where $S_{T}(G)=\sum_{u \neq v} T_{B}(u, v), S_{I}(G)=$ $\sum_{u \neq v} I_{B}(u, v), S_{F}(G)=\sum_{u \neq v} F_{B}(u, v)$.

The degree of a vertex x in an SVNG, $G=(A, B)$ is defined to be sum of
the weights of the edges incident at x. It is denoted by $d_{G}(u)$ and is equal to $\left(\sum_{u \neq v} T_{B}(u, v), \sum_{u \neq v} I_{B}(u, v), \sum_{u \neq v} F_{B}(u, v)\right)$ for all v adjacent to u in G^{*}.
Two vertices x and y are said to be neighbors in SVNG if either one of the following conditions hold

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})>0, \mathrm{I}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})>0, \mathrm{~F}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})>0 \\
& \mathrm{~T}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})=0, \mathrm{I}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})>0, \mathrm{~F}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})>0 \\
& \mathrm{~T}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})>0, \mathrm{I}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})=0, \mathrm{~F}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})>0 \\
& \mathrm{~T}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})>0, \mathrm{I}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})>0, \mathrm{~F}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})=0 \\
& \mathrm{~T}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})=0, \mathrm{I}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})=0, \mathrm{~F}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})>0 \\
& \mathrm{~T}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})=0, \mathrm{I}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})>0, \mathrm{~F}_{\mathrm{B}}(\mathrm{x}, \mathrm{y})=0
\end{aligned}
$$

$$
T_{B}(x, y)>0, I_{B}(x, y)=0, F_{B}(x, y)=0 \text { for } x, y \in A
$$

Let G and G^{\prime} be single valued neutrosophic graphs with underlying sets V and V^{\prime} respectively. A homomorphism of single valued neutrosophic graphs, $h: G \rightarrow G^{\prime}$ is a map $h: V \rightarrow V^{\prime}$ which satisfies

$$
\begin{aligned}
& T_{A}(u) \leq T_{A^{\prime}}(h(u)), I_{A}(u) \leq I_{A^{\prime}}(h(u)), F_{A}(u) \leq F_{A^{\prime}}(h(u)) \text { for all } u \in V \\
& \quad T_{B}(u, v) \leq T_{A^{\prime}}(h(u), h(v)), \quad I_{B}(u, v) \leq I_{B^{\prime}}(h(u), h(v)), \quad F_{B}(u, v) \leq F_{B^{\prime}}(h(u), h(v))
\end{aligned}
$$

for all $u, v \in V$.
Let G and G^{\prime} be single valued neutrosophic graphs with underlying sets V and V^{\prime} respectively. An isomorphism of single valued neutrosophic graphs, $h: G \rightarrow G^{\prime}$ is a bijective map $h: V \rightarrow$ V^{\prime} which satisfies

$$
\begin{aligned}
& T_{A}(u)=T_{A^{\prime}}(h(u)), I_{A}(u)=I_{A^{\prime}}(h(u)), F_{A}(u)=F_{A^{\prime}}(h(u)) \text { for all } u \in V \\
& \quad T_{B}(u, v)=T_{B^{\prime}}(h(u), h(v)), \quad I_{B}(u, v)=I_{B^{\prime}}(h(u), h(v)), \quad F_{B}(u, v)=F_{B^{\prime}}(h(u), h(v))
\end{aligned}
$$

for all $u, v \in V$.Then G is said to be isomorphic to G^{\prime}. Two isomorphic graphs are given below A weak isomorphism of single valued neutrosophic graphs, $h: G \rightarrow G^{\prime}$ is a map $h: V \rightarrow V^{\prime}$ which is a bijective homomorphism that satisfies

$$
\mathrm{T}_{\mathrm{A}}(\mathrm{u})=\mathrm{T}_{\mathrm{A}^{\prime}}(\mathrm{h}(\mathrm{u})), \mathrm{I}_{\mathrm{A}}(\mathrm{u})=\mathrm{I}_{\mathrm{A}^{\prime}}(\mathrm{h}(\mathrm{u})), \mathrm{F}_{\mathrm{A}}(\mathrm{u})=\mathrm{F}_{\mathrm{A}^{\prime}}(\mathrm{h}(\mathrm{u})) \text { for all } \mathrm{u} \in \mathrm{~V}
$$

A co-weak isomorphism of single valued neutrosophic graphs, $\mathrm{h}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is a map $\mathrm{h}: \mathrm{V} \rightarrow$ V^{\prime} which is a bijective homomorphism that satisfies

$$
T_{B}(u, v)=T_{B^{\prime}}(h(u), h(v)), I_{B}(u, v)=I_{B^{\prime}}(h(u), h(v)), F_{B}(u, v)=F_{B^{\prime}}(h(u), h(v)) \text { for }
$$ all $u, v \in V$.

The busy value of the vertex x in G is $B V(x)=\left(B V_{T_{A}}(x), B_{I_{A}}(x), B V_{F_{A}}(x)\right)=\left(\sum_{i} T_{A}(x) \wedge\right.$ $\left.\mathrm{T}_{\mathrm{A}}\left(\mathrm{x}_{\mathrm{i}}\right), \sum_{\mathrm{i}} \mathrm{I}_{\mathrm{A}}(\mathrm{x}) \wedge \mathrm{I}_{\mathrm{A}}\left(\mathrm{x}_{\mathrm{i}}\right), \sum_{\mathrm{i}} \mathrm{F}_{\mathrm{A}}(\mathrm{x}) \vee \mathrm{F}_{\mathrm{A}}\left(\mathrm{x}_{\mathrm{i}}\right)\right)$ where x_{i} are the neighbours of x and the busy value of G is $B V(G)=\sum_{i} B V\left(x_{i}\right)$ where x_{i} are the vertices of G.
A vertex in a G is a busy vertex if $\left(T_{A}, I_{A}, F_{A}\right)(x) \leq d_{G}(x)$.
Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The $\mathbf{1}$-quasitotal graph, (denoted by $\mathrm{Q}_{1}(\mathrm{G})$) of G is defined as follows:
The vertex set of $\mathrm{Q}_{1}(\mathrm{G})$, that is $\mathrm{V}\left(\mathrm{Q}_{1}(\mathrm{G})\right)=\mathrm{V}(\mathrm{G}) \cup \mathrm{E}(\mathrm{G})$.
Two vertices x, y in $V\left(Q_{1}(G)\right)$ are adjacent if they satisfy one of the following conditions:
(i). x, y are in $V(G)$ and $(x, y) \in E(G)$.
(ii). x, y are in $E(G)$ and x, y are incident in G.

Let G : (A,B) be a SVN graph with the underlying crisp graph $G^{*}=(V, E)$. The vertices and edges of G are taken together as vertex set of $s d(G)=\left(A_{s d}, B_{s d}\right)$, each edge 'e' in G is replaced by a new vertex and that vertex is made as a adjacent of those vertices which lie on ' e ' in G. Here $A_{\text {sd }}$ is a SVN subset defined on $V \cup E$ as

$$
\begin{aligned}
& \quad\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{~F}_{\mathrm{A}}\right)_{\text {sd }}(\mathrm{x})=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{~F}_{\mathrm{A}}\right)(\mathrm{x}) \quad \text { if } \mathrm{x} \in \mathrm{~V} \\
& =\left(\mathrm{T}_{\mathrm{B}}, \mathrm{I}_{\mathrm{B}}, \mathrm{~F}_{\mathrm{B}}\right)(\mathrm{x}) \quad \text { if } \mathrm{x} \in \mathrm{E}
\end{aligned}
$$

The $S V N$ relation $B_{s d}$ on $V \cup E$ is defined as

$$
\mathrm{T}_{\mathrm{B}_{\mathrm{d}}}(\mathrm{x}, \mathrm{y})=\mathrm{T}_{\mathrm{A}}(\mathrm{x}) \wedge \mathrm{T}_{\mathrm{B}}(\mathrm{y}) \quad \text { if } \mathrm{x} \in \mathrm{~V} \text { and } \mathrm{y} \in \mathrm{E}
$$

$=0$ otherwise

$$
\mathrm{I}_{\mathrm{B}_{\mathrm{sd}}}(\mathrm{x}, \mathrm{y})=\mathrm{I}_{\mathrm{A}}(\mathrm{x}) \wedge \mathrm{I}_{\mathrm{B}}(\mathrm{y}) \quad \text { if } \mathrm{x} \in \mathrm{~V} \text { and } \mathrm{y} \in \mathrm{E}
$$

$=0$ otherwise

$$
F_{B_{s d}}(x, y)=F_{A}(x) \vee F_{B}(y) \quad \text { if } x \in V \text { and } y \in E
$$

$=0$ otherwise
$\left(\mathrm{T}_{\mathrm{B}_{\mathrm{sd}}}, \mathrm{I}_{\mathrm{B}_{s d}}, \mathrm{~F}_{\mathrm{B}_{\mathrm{sd}}}\right)(\mathrm{x}, \mathrm{y})$ is a SVN relation on $\left(\mathrm{T}_{\mathrm{A}_{\text {sd }}}, \mathrm{I}_{\mathrm{A}_{s d}}, \mathrm{~F}_{\mathrm{A}_{\mathrm{sd}}}\right)$ and hence the pair $\operatorname{sd}(\mathrm{G})=$ $\left(A_{s d}, B_{s d}\right)$, is a SVN graph. This pair is said as subdivision SVN graph of G.

SVN Graph - G

Subdivision Graph - sd(G)

In the above $\operatorname{sd}(\mathrm{G}),(\mathrm{a}, \mathrm{u})=(0.1,0.2,0.7),(\mathrm{u}, \mathrm{b})=(0.2,0.2,0.7),(\mathrm{b}, \mathrm{v})=(0.2,0.2,0.6)$, $(\mathrm{v}, \mathrm{c})=(0.3,0.2,0.7),(\mathrm{c}, \mathrm{w})=(0.3,0.2,0.8),(\mathrm{w}, \mathrm{d})=(0.4,0.3,0.8),(\mathrm{d}, \mathrm{x})=(0.4,0.3,0.6)$, $(\mathrm{x}, \mathrm{a})=(0.1,0.2,0.4)$

Let $G=(A, B)$ be a $S V N$ graph with its underlying crisp graph $G^{*}=(V, E)$. The pair $\operatorname{tl}(G)=$ $\left(A_{t l}, B_{t l}\right)$ of G is defined as follows. The vertex set of $t(G)$ is $V \cup E$. The $S V N$ subset $A_{t l}$ is defined on $V \cup E$ as,

$$
\begin{aligned}
& \quad\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{~F}_{\mathrm{A}}\right)_{\mathrm{t1}}(\mathrm{x})=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{~F}_{\mathrm{A}}\right)(\mathrm{x}) \quad \text { if } \mathrm{x} \in \mathrm{~V} \\
& =\left(\mathrm{T}_{\mathrm{B}}, \mathrm{I}_{\mathrm{B}}, \mathrm{~F}_{\mathrm{B}}\right)(\mathrm{x}) \quad \text { if } \mathrm{x} \in \mathrm{E}
\end{aligned}
$$

The SVN relation $B_{t l}$ on $V \cup E$ is defined as

$$
\begin{gathered}
\mathrm{T}_{\mathrm{B}_{\mathrm{t}}}(\mathrm{x}, \mathrm{y})=\mathrm{T}_{\mathrm{B}}(\mathrm{x}, \mathrm{y}), \mathrm{I}_{\mathrm{B}_{\mathrm{tl}}}(\mathrm{x}, \mathrm{y})=\mathrm{I}_{\mathrm{B}}(\mathrm{x}, \mathrm{y}), \mathrm{F}_{\mathrm{B}_{\mathrm{tl}}}(\mathrm{x}, \mathrm{y})=\mathrm{F}_{\mathrm{B}}(\mathrm{x}, \mathrm{y}) \text { if }(\mathrm{x}, \mathrm{y}) \in \mathrm{E} \\
\mathrm{~T}_{\mathrm{B}_{\mathrm{tl}}}(\mathrm{x}, \mathrm{y})=\mathrm{T}_{\mathrm{A}}(\mathrm{x}) \wedge \mathrm{T}_{\mathrm{B}}(\mathrm{y}) \quad \text { if } \mathrm{x} \in \mathrm{~V} \text { and } y \in E
\end{gathered}
$$

$=0$ otherwise

$$
\mathrm{I}_{\mathrm{B}_{\mathrm{tl}}}(\mathrm{x}, \mathrm{y})=\mathrm{I}_{\mathrm{A}}(\mathrm{x}) \wedge \mathrm{I}_{\mathrm{B}}(\mathrm{y}) \quad \text { if } \mathrm{x} \in \mathrm{~V} \text { and } \mathrm{y} \in \mathrm{E}
$$

$=0$ otherwise

$$
\mathrm{F}_{\mathrm{B}_{\mathrm{tl}}}(\mathrm{x}, \mathrm{y})=\mathrm{F}_{\mathrm{A}}(\mathrm{x}) \vee \mathrm{F}_{\mathrm{B}}(\mathrm{y}) \quad \text { if } \mathrm{x} \in \mathrm{~V} \text { and } \mathrm{y} \in \mathrm{E}
$$

$=0$ otherwise

$$
\mathrm{T}_{\mathrm{B}_{\mathrm{tl}}}(\mathrm{e}, \mathrm{f})=\mathrm{T}_{\mathrm{B}}(\mathrm{e}) \wedge \mathrm{T}_{\mathrm{B}}(\mathrm{f}) \quad \text { if } \mathrm{e}, \mathrm{f} \in \mathrm{E} \& \text { they have a vertex in common }
$$

$=0$ otherwise

$$
\mathrm{I}_{\mathrm{B}_{\mathrm{tl}}}(\mathrm{e}, \mathrm{f})=\mathrm{I}_{\mathrm{B}}(\mathrm{e}) \wedge \mathrm{I}_{\mathrm{B}}(\mathrm{f}) \quad \text { if } \mathrm{e}, \mathrm{f} \in \mathrm{E} \& \text { they have a vertex in common }
$$

$=0$ otherwise

$$
\mathrm{F}_{\mathrm{Btl}}(\mathrm{e}, \mathrm{f})=\mathrm{F}_{\mathrm{B}}(\mathrm{e}) \vee \mathrm{F}_{\mathrm{B}}(\mathrm{f}) \quad \text { if } \mathrm{e}, \mathrm{f} \in \mathrm{E} \& \text { they have a vertex in common }
$$

$=0$ otherwise
Thus by the definition B_{tl} is a single valued neutrosophic relation on A_{tl}. Hence the pair $\operatorname{tl}(G)=\left(A_{t l}, B_{t l}\right)$ is a SVN graph and is termed as Total Single Valued Neutrosophic Graph.

I. 1-Quasi total Single Valued Neutrosophic Graph

Definition 3.1 Let $G=(A, B)$ be a $S V N$ graph with its underlying crisp graph $G^{*}=(V, E)$. The pair $Q_{1} \mathrm{tl}(\mathrm{G})=\left(\mathrm{A}_{Q_{1} \mathrm{tl}}, \mathrm{B}_{Q_{1} \mathrm{tll}}\right)$ of G is defined as follows. The vertex set of $Q_{1} \mathrm{tl}(\mathrm{G})$ is $V \cup \mathrm{E}$. The $S V N$ subset $A_{Q 1 t 1}$ is defined on $V \cup E$ as,

$$
\begin{aligned}
& \quad\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{~F}_{\mathrm{A}}\right)_{Q_{1} \mathrm{tl}}(\mathrm{x})=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{~F}_{\mathrm{A}}\right)(\mathrm{x}) \quad \text { if } \mathrm{x} \in \mathrm{~V} \\
& =\left(\mathrm{T}_{\mathrm{B}}, \mathrm{I}_{\mathrm{B}}, \mathrm{~F}_{\mathrm{B}}\right)(\mathrm{x}) \quad \text { if } \mathrm{x} \in \mathrm{E}
\end{aligned}
$$

The $S V N$ relation $B_{Q_{1} t l}$ on $V \cup E$ is defined as

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{B}_{Q_{1}+1}}(\mathrm{x}, \mathrm{y})=\mathrm{T}_{\mathrm{B}}(\mathrm{x}, \mathrm{y}), \mathrm{I}_{\mathrm{B}_{Q_{1}+11}}(\mathrm{x}, \mathrm{y})=\mathrm{I}_{\mathrm{B}}(\mathrm{x}, \mathrm{y}), \mathrm{F}_{\mathrm{B}_{Q_{111}}}(\mathrm{x}, \mathrm{y})=\mathrm{F}_{\mathrm{B}}(\mathrm{x}, \mathrm{y}) \text { if }(\mathrm{x}, \mathrm{y}) \in \mathrm{E} \\
& \mathrm{~T}_{\mathrm{B}_{Q_{1}+1}}(\mathrm{e}, \mathrm{f})=\mathrm{T}_{\mathrm{B}}(\mathrm{e}) \wedge \mathrm{T}_{\mathrm{B}}(\mathrm{f}) \quad \text { if } \mathrm{e}, \mathrm{f} \in \mathrm{E} \text { \& they have a vertex in common }
\end{aligned}
$$

$=0$ otherwise $\mathrm{I}_{\mathrm{B}_{Q_{1} \text { tl }}}(\mathrm{e}, \mathrm{f})=\mathrm{I}_{\mathrm{B}}(\mathrm{e}) \wedge \mathrm{I}_{\mathrm{B}}(\mathrm{f}) \quad$ if $\mathrm{e}, \mathrm{f} \in \mathrm{E} \& t$ hey have a vertex in common
$=0$ otherwise

$$
\mathrm{F}_{\mathrm{B}_{Q_{11} \mathrm{l}}}(\mathrm{e}, \mathrm{f})=\mathrm{F}_{\mathrm{B}}(\mathrm{e}) \vee \mathrm{F}_{\mathrm{B}}(\mathrm{f}) \quad \text { if } \mathrm{e}, \mathrm{f} \in \mathrm{E} \& \text { they have a vertex in common }
$$

$=0$ otherwise
Thus by the definition $\mathrm{B}_{\mathrm{Q} 1 t}$ is a single valued neutrosophic relation on $\mathrm{A}_{\mathrm{Q} 1 \mathrm{t}}$. Hence the pair $Q_{1} \mathrm{tl}(\mathrm{G})=\left(\mathrm{A}_{Q_{1} t \mathrm{ll}}, \mathrm{B}_{Q_{1} \mathrm{tl}}\right)$ is a $S V N$ graph and is termed as 1 - Quasi Total Single Valued Neutrosophic Graph.

Vol 12, Issue 02, 2021

SVN Graph - G

1 - Quasi Total SVN Graph - Qitl(G)

In the above $\mathrm{Q}_{1 \mathrm{tl}}(\mathrm{G}),(\mathrm{u}, \mathrm{v})=(0.2,0.2,0.5),(\mathrm{v}, \mathrm{w})=(0.3,0.2,0.7),(\mathrm{w}, \mathrm{x})=(0.4,0.3,0.6)$, $(\mathrm{x}, \mathrm{u})=(0.1,0.2,0.3),(\mathrm{a}, \mathrm{b})=(0.1,0.2,0.5),(\mathrm{b}, \mathrm{c})=(0.2,0.2,0.7),(\mathrm{c}, \mathrm{d})=(0.3,0.2,0.7)$, $(\mathrm{d}, \mathrm{a})=(0.1,0.2,0.6)$

Properties of 1 - Quasi Total SVN Graph

Theorem 3.2

Let $G=(A, B)$ be $S V N$ graph and $t(G)$ is its Total SVN graph, order of $\mathrm{tl}(\mathrm{G})=\operatorname{order}(\mathrm{G})+$ size(G).
Proof : By definition of $\mathrm{Q}_{1} \mathrm{t}(\mathrm{G})$, vertex set of $\mathrm{Q}_{1} \mathrm{tl}(\mathrm{G})$ is $V \cup E$.
Order of $\mathrm{Q}_{1} \mathrm{tl}(\mathrm{G})=\left(\mathrm{O}_{\mathrm{T}}\left(\mathrm{Q}_{1} \mathrm{tl}(\mathrm{G})\right), \mathrm{O}_{\mathrm{I}}\left(\mathrm{Q}_{1} \mathrm{tl}(\mathrm{G})\right), \mathrm{O}_{\mathrm{F}}\left(\mathrm{Q}_{1} \mathrm{tl}(\mathrm{G})\right)\right)$
$=\left(\sum_{\mathrm{x} \in \mathrm{VUE}} \mathrm{T}_{\mathrm{A}_{\mathrm{Q}_{1} \mathrm{tI}}}(\mathrm{x}), \sum_{\mathrm{x} \in \mathrm{VUE}} \mathrm{I}_{\mathrm{A}_{\mathrm{Q}_{1} \mathrm{tI}}}(\mathrm{x}), \sum_{\mathrm{x} \in \mathrm{VUE}} \mathrm{F}_{\mathrm{A}_{\mathrm{Q}_{1} \mathrm{tl}}}(\mathrm{x})\right)$
$=\left(\sum_{x \in V} T_{A_{Q_{1}+1}}(x)+\sum_{x \in E} T_{A_{Q_{1}+1}}(x), \sum_{x \in V} \mathrm{I}_{\mathrm{A}_{\mathrm{Q}_{1}+1}}(\mathrm{x})+\sum_{\mathrm{x} \in \mathrm{E}} \mathrm{I}_{\mathrm{A}_{\mathrm{Q}_{1} \text { tll }}}(\mathrm{x}), \sum_{\mathrm{x} \in \mathrm{V}} \mathrm{F}_{\mathrm{A}_{\mathrm{Q}_{1} t 1}}(\mathrm{x})+\right.$
$\left.\sum_{x \in E} F_{A_{Q_{1}+1}}(x)\right)=\left(\sum_{x \in V} T_{A_{Q_{1} t l}}(x), \sum_{x \in V} I_{A_{Q_{1} t 1}}(x), \sum_{x \in V} F_{A_{Q_{1}+1}}(x)\right)+$
$\left(\sum_{\mathrm{x} \in \mathrm{E}} \mathrm{T}_{\mathrm{A}_{\mathrm{Q}_{1}+1}}(\mathrm{x}), \sum_{\mathrm{x} \in \mathrm{E}} \mathrm{I}_{\mathrm{A}_{\mathrm{Q}_{1} \mathrm{tI}}}(\mathrm{x}), \sum_{\mathrm{x} \in \mathrm{E}} \mathrm{F}_{\mathrm{A}_{\mathrm{Q}_{1} \mathrm{tl}}}(\mathrm{x})\right)$
$=\operatorname{order}(\mathrm{G})+\operatorname{size}(\mathrm{G})$.
Theorem 3.3: Let $G=(A, B)$ be $S V N$ graph and $t(G)$ is its Total $S V N$ graph, size ofQ ${ }_{1} \mathrm{tl}_{(\mathrm{G})}$ $=\operatorname{size}(G)+\left(\sum_{x, y \in E} T_{B}(x) \wedge T_{B}(y), \sum_{x, y \in E} I_{B}(x) \wedge I_{B}(y), \sum_{x, y \in E} F_{B}(x) \vee F_{B}(y)\right)$
Proof: size of $\mathrm{Q}_{1} \mathrm{tl}(\mathrm{G})=\left(\mathrm{S}_{\mathrm{T}}\left(\mathrm{Q}_{1} \mathrm{tl}(\mathrm{G})\right), \mathrm{S}_{\mathrm{I}}\left(\mathrm{Q}_{1} \mathrm{tl}(\mathrm{G})\right), \mathrm{S}_{\mathrm{F}}\left(\mathrm{Q}_{1} \mathrm{tl}(\mathrm{G})\right)\right)$

$$
=\left(\sum_{\mathrm{x}, \mathrm{y} \in \mathrm{VUE}} \mathrm{~T}_{\mathrm{B}_{\mathrm{Q}_{1} \mathrm{tl}}}(\mathrm{x}, \mathrm{y}), \sum_{\mathrm{x}, \mathrm{y} \in \mathrm{VUE}} \mathrm{I}_{\mathrm{B}_{\mathrm{Q}_{1} \mathrm{tl}}}(\mathrm{x}, \mathrm{y}), \sum_{\mathrm{x}, \mathrm{y} \in \mathrm{VUE}} \mathrm{~F}_{\mathrm{B}_{\mathrm{Q}_{1} \mathrm{tl}}}(\mathrm{x}, \mathrm{y})\right)
$$

Vol 12, Issue 02, 2021

$$
\begin{aligned}
&=\left(\left(\sum_{x, y \in V} T_{Q_{Q_{1}+1}}(x, y), \sum_{x, y \in V} I_{B_{Q_{1}+1}}(x, y), \sum_{x, y \in V} F_{B_{Q_{1} t 1}}(x, y)\right)\right. \\
&\left.+\left(\sum_{x, y \in E} T_{B_{Q_{1}+1}}(x, y), \sum_{x, y \in E} I_{B_{Q_{1}+1}}(x, y), \sum_{x, y \in E} F_{B_{Q_{1}+1}}(x, y)\right)\right) \\
&=\left(\sum_{x, y \in V} T_{B_{Q_{1}+1}}(x, y), \sum_{x, y \in V} I_{B_{Q_{1} t 11}}(x, y), \sum_{x, y \in V} F_{B_{Q_{1}+1}}(x, y)\right) \\
&+\left(\sum_{x, y \in E} T_{B}(x) \wedge T_{B}(y), \sum_{x, y \in E} I_{B}(x) \wedge I_{B}(y), \sum_{x, y \in E} F_{B}(x) \vee F_{B}(y)\right) \\
&= \operatorname{size}(G)+\left(\sum_{x, y \in E} T_{B}(x) \wedge T_{B}(y), \sum_{x, y \in E} I_{B}(x) \wedge I_{B}(y), \sum_{x, y \in E} F_{B}(x) \vee F_{B}(y)\right)
\end{aligned}
$$

Theorem 3.4: $\mathrm{d}_{\mathrm{Qltl}(\mathrm{G})}(\mathrm{u})=\mathrm{d}_{\mathrm{G}}(\mathrm{u})$ if $u \in \mathrm{~V}, \mathrm{~d}_{\mathrm{Qltl\mid}(\mathrm{G})}\left(\mathrm{y}_{\mathrm{i}}\right)=$ busy value of y_{i} in $\mathrm{Q}_{\mathrm{t}} \mathrm{tl}(\mathrm{G})$ if $\mathrm{y}_{\mathrm{i}} \in \mathrm{E}$. Proof: By the definition of degree of a vertex given
Case 1: Let $\mathrm{x} \in \mathrm{V}$,

$$
\begin{aligned}
\mathrm{d}_{\mathrm{Q}_{1} \mathrm{tl}(\mathrm{G})}(\mathrm{x})= & \left(\sum_{\mathrm{a} \in \mathrm{~V}} \mathrm{~T}_{\mathrm{Q}_{\mathrm{Q}_{1} \mathrm{tl}}}(\mathrm{x}, \mathrm{a}), \sum_{\mathrm{a} \in \mathrm{~V}} \mathrm{I}_{\mathrm{B}_{\mathrm{Q}_{1}+1}}(\mathrm{x}, \mathrm{a}), \sum_{\mathrm{a} \in \mathrm{~V}} \mathrm{~F}_{\mathrm{B}_{\mathrm{Q}_{1} \mathrm{tl}}}(\mathrm{x}, \mathrm{a})\right) \\
& =\left(\sum_{\mathrm{y} \in \mathrm{E}} \mathrm{~T}_{\mathrm{B}}(\mathrm{y}), \sum_{\mathrm{y} \in \mathrm{E}} \mathrm{I}_{\mathrm{B}}(\mathrm{y}), \sum_{\mathrm{y} \in \mathrm{E}} \mathrm{~F}_{\mathrm{B}}(\mathrm{y})\right)
\end{aligned}
$$

$=\mathrm{d}_{\mathrm{G}}(\mathrm{x})$
Case 2: If $y_{i} \in E$,

$$
\begin{aligned}
& d_{Q_{1}+\mathrm{ll}(G)}\left(y_{i}\right)=\left(\sum_{b \in E} T_{B_{t 1}}\left(y_{i}, b\right), \sum_{b \in E} I_{B_{t l}}\left(y_{i}, b\right), \sum_{b \in E} F_{B_{t 1}}\left(y_{i}, b\right)\right) \\
= & +\left(\sum_{b \in E} T_{B}\left(y_{i}\right) \wedge T_{B}(b), \sum_{b \in E} I_{B}\left(y_{i}\right) \wedge I_{B}(b), \sum_{b \in E} F_{B}\left(y_{i}\right) \vee F_{B}(b)\right)
\end{aligned}
$$

$=$ busy value of y_{i} in $Q_{1} t \mathrm{l}(\mathrm{G})$.
Theorem 3.5 : 1- Quasi Total Single Valued Neutrosophic of any Single Valued Neutrosophic is disconnected.
Proof: Let $\mathrm{G}=(\mathrm{A}, \mathrm{B})$ be a SVN graph. The SVN vertex set of $\mathrm{Q}_{\mathrm{tt}}(\mathrm{G})$ is $V \cup E$ where V and E are vertex set and Edge set of G respectively, and the SVN relation is only defined between $x, y \in V$ and $e, f \in E$. As there is no SVN relation between $x \in V$ and $e \in E$ of elements in the vertex set of $\mathrm{Q}_{1} \mathrm{tl}(\mathrm{G})$, there is no path that connects u and e in $\mathrm{Q}_{1} \mathrm{tl}(\mathrm{G})$. Hence, $\mathrm{Q}_{\mathrm{t}} \mathrm{l}(\mathrm{G})$ is disconnected graph.
Theorem 3.6 : If G is a SVN graph then $\operatorname{sd}(\mathrm{G})$ is weak isomorphic to $\mathrm{Q}_{1} \mathrm{tl}(\mathrm{G})$.
Proof : Let $G=(A, B)$ be a SVN graph with its underlying crisp graph $G^{*}=(V, E)$. By the definition of $\operatorname{sd}(G), A_{s d}$ is a $S V N$ subset defined on $V \cup E$ as

$$
\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{~F}_{\mathrm{A}}\right)_{\mathrm{sd}}(\mathrm{x})=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{~F}_{\mathrm{A}}\right)(\mathrm{x}) \quad \text { if } \mathrm{x} \in \mathrm{~V}
$$

Vol 12, Issue 02, 2021

$$
\begin{equation*}
=\left(T_{B}, I_{B}, F_{B}\right)(x) \quad \text { if } x \in E \tag{1}
\end{equation*}
$$

The $S V N$ relation $B_{s d}$ on $V \cup E$ is defined as

$$
\mathrm{T}_{\mathrm{B}_{s d}}(\mathrm{x}, \mathrm{y})=\mathrm{T}_{\mathrm{A}}(\mathrm{x}) \wedge \mathrm{T}_{\mathrm{B}}(\mathrm{y}) \quad \text { if } \mathrm{x} \in \mathrm{~V} \text { and } \mathrm{y} \in \mathrm{E}
$$

$=0$ otherwise

$$
\mathrm{I}_{\mathrm{B}_{\mathrm{sd}}}(\mathrm{x}, \mathrm{y})=\mathrm{I}_{\mathrm{A}}(\mathrm{x}) \wedge \mathrm{I}_{\mathrm{B}}(\mathrm{y}) \quad \text { if } \mathrm{x} \in \mathrm{~V} \text { and } \mathrm{y} \in \mathrm{E}
$$

$=0$ otherwise

$$
F_{B_{s d}}(x, y)=F_{A}(x) \vee F_{B}(y) \quad \text { if } x \in V \text { and } y \in E
$$

$=0$ otherwise

Using (1) in the above equation,

$$
\mathrm{T}_{\mathrm{B}_{\mathrm{sd}}}(\mathrm{x}, \mathrm{y})=\mathrm{T}_{\mathrm{A}_{\mathrm{sd}}}(\mathrm{x}) \wedge \mathrm{T}_{\mathrm{A}_{\mathrm{sd}}}(\mathrm{y}) \quad \text { if } \mathrm{x} \in \mathrm{~V} \text { and } \mathrm{y} \in \mathrm{E}
$$

$=0$ otherwise

$$
\mathrm{I}_{\mathrm{B}_{\mathrm{sd}}}(\mathrm{x}, \mathrm{y})=\mathrm{I}_{\mathrm{A}_{\mathrm{sd}}}(\mathrm{x}) \wedge \mathrm{I}_{A_{\mathrm{sd}}}(\mathrm{y}) \quad \text { if } \mathrm{x} \in \mathrm{~V} \text { and } \mathrm{y} \in \mathrm{E}
$$

$=0$ otherwise

$$
\mathrm{F}_{\mathrm{B}_{\mathrm{sd}}}(\mathrm{x}, \mathrm{y})=\mathrm{F}_{\mathrm{A}_{\mathrm{sd}}}(\mathrm{x}) \vee \mathrm{F}_{A_{\mathrm{sd}}}(\mathrm{y}) \quad \text { if } \mathrm{x} \in \mathrm{~V} \text { and } \mathrm{y} \in \mathrm{E}
$$

$=0$ otherwise
Define a map ' g ' from $\operatorname{sd}(\mathrm{G})$ to $\mathrm{Q}_{\mathrm{t}} \mathrm{tl}(\mathrm{G})$ as identity map $\mathrm{g}: \mathrm{V} \cup \mathrm{E} \rightarrow \mathrm{V} \cup \mathrm{E}, \mathrm{g}$ be bijection satisfying

That is $\left(T_{A}, I_{A}, F_{A}\right)_{Q_{1} t l}(g(x))=\left(T_{A}, I_{A}, F_{A}\right)_{s d}(x)$ if $x \in V \cup E$
Case 1:
If $x, y \in V,\left(T_{B}, I_{B}, F_{B}\right)_{t l}(g(x), g(y))=\left(T_{B}, I_{B}, F_{B}\right)_{Q_{1} t l}(x, y)=\left(T_{B}, I_{B}, F_{B}\right)(x, y)$ if $x, y \in V$.
By the definition of $\operatorname{sd}(G),\left(T_{B}, I_{B}, F_{B}\right)_{s d}(x, y)=0$ if $x, y \in V$
That implies $\left(T_{B}, I_{B}, F_{B}\right)_{s d}(x, y) \leq\left(T_{B}, I_{B}, F_{B}\right)_{t l}(g(x), g(y))$ if $x, y \in V$
Case 2:
If $x=e_{i}, y=e_{j} \in E$ then

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{B}_{\mathrm{Q}_{1}+1}}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)=\min \left\{\mathrm{T}_{\mathrm{B}}\left(\mathrm{e}_{\mathrm{i}}\right), \mathrm{T}_{\mathrm{B}}\left(\mathrm{e}_{\mathrm{j}}\right)\right\} \text { if } \mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}} \text { have a vertex in common } \\
& \mathrm{I}_{\mathrm{B}_{\mathrm{Q}_{\mathrm{i}}+1}}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)=\min \left\{\mathrm{I}_{\mathrm{B}}\left(\mathrm{e}_{\mathrm{i}}\right), \mathrm{I}_{\mathrm{B}}\left(\mathrm{e}_{\mathrm{j}}\right)\right\} \text { if } \mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}} \text { have a vertex in common }
\end{aligned}
$$

$\mathrm{F}_{\mathrm{B}_{\mathrm{Q}_{1} \mathrm{tl}}}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)=\max \left\{\mathrm{F}_{\mathrm{B}}\left(\mathrm{e}_{\mathrm{i}}\right), \mathrm{F}_{\mathrm{B}}\left(\mathrm{e}_{\mathrm{j}}\right)\right\}$ if $\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}$ have a vertex in common $=0$ otherwise

$$
\begin{aligned}
& T_{B_{s d}}\left(e_{i}, e_{j}\right) \leq T_{B_{t l}}\left(e_{i}, e_{j}\right) \text { if } e_{i}, e_{j} \in E \\
& I_{B_{s d}}\left(e_{i}, e_{j}\right) \leq I_{B_{t 1}}\left(e_{i}, e_{j}\right) \text { if } e_{i}, e_{j} \in E \\
& F_{B_{s d}}\left(e_{i}, e_{j}\right) \leq F_{B_{t l}}\left(e_{i}, e_{j}\right) \text { if } e_{i}, e_{j} \in E \\
& \text { cases } \\
& T_{B_{s d}}(x, y) \leq T_{B_{t 1}}(x, y) \text { if } x, y \in V \cup E \\
& \mathrm{I}_{\mathrm{B}_{\text {sd }}}(\mathrm{x}, \mathrm{y}) \leq \mathrm{I}_{\mathrm{B}_{\mathrm{tl}}}(\mathrm{x}, \mathrm{y}) \text { if } \mathrm{x}, \mathrm{y} \in \mathrm{~V} \cup \mathrm{E} \\
& F_{B_{s d}}(x, y) \leq F_{B_{t l}}(x, y) \text { if } x, y \in V \cup E
\end{aligned}
$$

Thus
from
we
get

Therefore $\mathrm{g}: \mathrm{sd}(\mathrm{G}) \rightarrow \mathrm{Q}_{1} \operatorname{tl}(\mathrm{G})$ is a weak isomorphism.

IV. SINGLE VALUED NEUTROSOPHIC LINE GRAPH

Definition 4.1 : Let $\mathrm{G}=(\mathrm{A}, \mathrm{B})$ be a SVN graph with the underlying graph $\mathrm{G}^{*}=(\mathrm{V}, \mathrm{E})$. The SVN line graph of G is $\mathrm{L}(\mathrm{G})=(\mathrm{P}, \mathrm{Q})$ with the underlying graph (Z, W) where the vertex set is $Z=\left\{S_{x}=\{x\} \cup\left\{u_{x}, v_{x}\right\}: x \in E, u_{x}, v_{x} \in V, x=\left(u_{x}, v_{x}\right)\right\}$
and $W=\left\{\left(S_{x}, S_{y}\right): S_{x} \cap S_{y} \neq \emptyset, x, y \in E, x \neq y\right\}$
$P\left(S_{x}\right)=\left(\mathrm{T}_{\mathrm{B}}(\mathrm{x}), \mathrm{I}_{\mathrm{B}}(\mathrm{x}), \mathrm{F}_{\mathrm{B}}(\mathrm{x})\right)$

Vol 12, Issue 02, 2021

$$
Q\left(S_{x}, S_{y}\right)=\left(\mathrm{T}_{\mathrm{B}}(\mathrm{x}) \wedge \mathrm{T}_{\mathrm{B}}(\mathrm{y}), \mathrm{I}_{\mathrm{B}}(\mathrm{x}) \wedge \mathrm{I}_{\mathrm{B}}(\mathrm{y}), \mathrm{F}_{\mathrm{B}}(\mathrm{x}) \vee F_{\mathrm{B}}(\mathrm{y})\right) \text { for all }\left(S_{x}, S_{y}\right) \in W .
$$

Example:

$\mathrm{b}((0.4,0.3,0.6)$

SVN Graph - G

S2((0.4, 0.3,0.6)

Line Graph - L(G)

Theorem 4.2: if $\mathrm{G} 1=(\mathrm{A} 1, \mathrm{~B} 1)$ and $\mathrm{G} 2=(\mathrm{A} 2, \mathrm{~B} 2)$ are the two isomorphic SVN graphs then their SVN line graphs are also isomorphic.
Proof: Give G1 and G2 are the two isomorphic SVN graphs with the underlying set S1 and S 2 respectively, i.e., there exists a bijective map $\mathrm{h}: \mathrm{S} 1 \rightarrow \mathrm{~S} 2$ satisfying
$T_{A_{1}}(x)=T_{A_{2}}(h(x)) ; I_{A_{1}}(x)=I_{A_{2}}(h(x)) ; F_{A_{1}}(x)=F_{A_{2}}(h(x))$ for all $x \in S_{1}$
$T_{B_{1}}(x)=T_{B_{2}}(h(x), h(y)) ; T_{B_{1}}(x)=T_{B_{2}} ; T_{B_{1}}(x)=T_{B_{2}}(h(x), h(y))$ for all $x, y \in S_{1}$.
Let $\mathrm{L}(\mathrm{G} 1)=(\mathrm{P} 1, \mathrm{Q} 1)$ and $\mathrm{L}(\mathrm{G} 2)=(\mathrm{P} 2, \mathrm{Q} 2)$ be the line graphs of G 1 and G 2 respectively.
Consider an $x \in E_{1}$. Let $x=\left(u_{x}, v_{x}\right)$. As $\mathrm{h}: \mathrm{S} 1 \rightarrow \mathrm{~S} 2$ is one to one, onto, $h(x)=$ $\left(h\left(u_{x}\right), h\left(v_{x}\right)\right) \in E_{2}$
Define : $\mathrm{Z} 1 \rightarrow \mathrm{Z} 2$ as $g\left(S_{x}\right)=S_{h(x)}$
As h is one to one and onto, g is well defined and one to one onto mapping.
$\operatorname{Consider} T_{P_{1}}\left(S_{x}\right)=T_{B_{1}}(x)=T_{B_{1}}\left(u_{x}, v_{x}\right)=T_{B_{2}}\left(h\left(u_{x}\right), h\left(v_{x}\right)\right)=T_{B_{2}}(h(x))$
$T_{P_{1}}\left(S_{x}\right)=T_{P_{2}}\left(S_{h(x)}\right)=T_{P_{2}}\left(g\left(S_{x}\right)\right)$ for all $x \in Z_{1}$
Similarly, $I_{P_{1}}\left(S_{x}\right)=I_{P_{2}}\left(g\left(S_{x}\right)\right)$ and $F_{P_{1}}\left(S_{x}\right)=F_{P_{2}}\left(g\left(S_{x}\right)\right)$ for all $x \in Z_{1}$
$T_{Q_{1}}\left(S_{x}, S_{y}\right)=T_{B_{1}}(x) \wedge T_{B_{1}}(y)$ for all $\left(S_{x}, S_{y}\right) \in W_{1}$
$=T_{B_{1}}\left(u_{x}, v_{x}\right) \wedge T_{B_{1}}\left(u_{y}, v_{y}\right)$
$=T_{B_{2}}\left(h\left(u_{x}\right), h\left(v_{x}\right)\right) \wedge T_{B_{2}}\left(h\left(u_{y}\right), h\left(v_{y}\right)\right)$
$=T_{B_{2}}(h(x)) \wedge T_{B_{2}}(h(y))$
$=T_{Q_{2}}\left(S_{h(x)}, S_{h(y)}\right)$
$=T_{Q_{2}}\left(g\left(S_{x}\right), g\left(S_{y}\right)\right)$ for all $x, y \in E_{1}$
$T_{Q_{1}}\left(S_{x}, S_{y}\right)=T_{Q_{2}}\left(g\left(S_{x}\right), g\left(S_{y}\right)\right)$ for all $S_{x}, S_{y} \in Z_{1}$
Similarly,
$I_{Q_{1}}\left(S_{x}, S_{y}\right)=I_{Q_{2}}\left(g\left(S_{x}\right), g\left(S_{y}\right)\right), F_{Q_{1}}\left(S_{x}, S_{y}\right)=F_{Q_{2}}\left(g\left(S_{x}\right), g\left(S_{y}\right)\right)$ for all $S_{x}, S_{y} \in Z_{1}$
From equations (1) and (2), L(G1) and L(G2) are isomorphic SVN line graphs when G1 and G2 are the two isomorphic SVN graphs.

3. REFERENCES

[1] Akram M., Operations on Single - Valued Nutrosophic Graphs, Journal of Uncertain Systems, January 2017.
[2] Akram, M., Bipolar fuzzy graphs, Information Sciences, 181 (2011), 5548-5564.
[3] Broumi, S., Talea, M., A. Bakali and F. Smarandache, Single-valued neutrosophic graphs, Journal of New Theory, vol.10, pp. 86 - 101, 2016.
[4] J. Malarvizhi and G. Divya, Isomorphism and Complement on Single Valued Neutrosophic Graphs, American International Journal of Research in Science, Technology, Engineering and Mathematics - 2019.
[5] Nagoorgani and J. Anu, Properties on Total and Middle Intuitionstic fuzzy graph, Internatioinal Journal of Fuzzy Mathematical Archive, 2015.
[6] S. Broumi, M. Talea, A. Bakali, P. K.Singh, F. Smarandache, Energy and Spectrum Analysis of Interval Valued Neutrosophic Graph using MATLAB, Neutrosophic Sets and Systems, Vol. 24, 2019, 46-60.
[7] Smarandache, F., A Unifying field in logics neutrosophy: Neutrosophic probability, set and logic, Re-hoboth: American Research Press, 1998.
[8] Bhavanari Satyanarayana, Devanaboina Srinivasalu, Kuncham Syam Prasad, Line graphs and Quasi total Graphs, International Journal of Computer Applications, Vol. 105, No. 3, Nov 2014.
[9] John N. Moderson, Fuzzy Line Graphs, Elsevier Science Publishers.
[10] Fekadu Tesgera Agama, Venkata Naga Srinivasa Rao Repalle, Pure and Applied Mathematic Journal, Jan 2020.
[11] M. Akram, R. Parvathi, Properties of Intitutionistic Fuzzy Line Graphs, Notes on Intitutionistic Fuzzy Sets, Vol.18, 2012.

