

1 – Quasi Total Single Valued Neutrosophic Graph And Its Properties

G.Divya¹, Dr. J. Malarvizhi², Dr. T. Geetha³

¹Research Scholar, PG and Research Department of Mathematics, K.N.Govt. Arts College (Autonomous) for women, Thanjavur – 7, Affliated to Bharathidasan University, Tamilnadu,

India.

²Principal, Govt. Arts College, Ariyalur, Affliated to Bharathidasan University, Tamilnadu, India

³Assistant Professor, PG and Research Department of Mathematics, Affliated to Bharathidasan University, Tamilnadu, India. K.N.Govt. Arts College (Autonomous) for women, Thanjavur – 7,

E-mail id: ²mathsdivya3@gmail.com

Abstract —. In this paper we construct the 1 - Quasi Total Single valued Neutrosophic Graph of the given Single valued Neutrosophic Graph. Some properties and relationships are observed. Also the Isomorphic property in Single Valued Neutrosophic Line graph is observed.

Keywords – Single valued Neutrosophic Graph, Total Single valued Neutrosophic Graph, 1 – Quasi Total Single valued Neutrosophic Graph.

1. INTRODUCTION

Fuzzy set theory and intuitionistic fuzzy sets theory are useful models for dealing with uncertainty and incomplete information. But they may not be sufficient in modeling of indeterminate and inconsistent information encountered in real world. In order to cope with this issue, neutrosophic set theory was proposed by Smarandache as a generalization of fuzzy sets and intuitionistic fuzzy sets.

Neutrosophic set is a powerful tool to deal with incomplete, indeterminate and inconsistent information in real world. It is a generalization of the theory of fuzzy set , intuitionistic fuzzy sets , interval-valued fuzzy sets and interval-valued intuitionistic fuzzy sets , then the neutrosophic set is characterized by a truth-membershipdegree (T), an indeterminacy-membership degree (I) and a falsity-membership degree (F)independently, which are within the real standard or nonstandard unit interval]⁻⁰, 1⁺[.

Properties and isomorphism of total and middle fuzzy graphs was given by Nagoorgani and Malarvizhi. Here, in this paper some properties of 1 - Quasi total Single valued Neutrosophic graphs is defined and isomorphic relation is discussed. Also the Isomorphic property in Single Valued Neutrosophic Line graph is observed.

2. PRELIMINARIES

A Single-Valued Neutrosophic graph(SVN graph) is a pair G = (A,B) of the crisp graph $G^* = (V, E)$ (i.e., with underlying set V), where $A : V \rightarrow [0, 1]$ is single-valued neutrosophic set in V and $B : V \times V \rightarrow [0, 1]$ is single-valued neutrosophic relation on V such that

 $T_B(xy) \le \min\{T_A(x), T_A(y)\},\$

 $I_B(xy) \le \min\{I_A(x), I_A(y)\},$

 $F_B(xy) \le \max\{F_A(x), F_A(y)\}$

for all x, $y \in V$. A is called single-valued neutrosophic vertex set of G and B is called single-valued neutrosophic edge set of G, respectively.

Given a single-valued neutrosophic graph G = (A,B) of a crisp graph $G^* = (V, E)$, the order of G is defined as Order (G) = $(O_T(G), O_I(G), O_F(G))$, where $O_T(G) = \sum_{v \in V} T_A(v)$, $O_I(G) = \sum_{v \in V} I_A(v)$, $O_F(G) = \sum_{v \in V} F_A(v)$.

Given a single-valued neutrosophic graph G = (A,B) of a crisp graph $G^* = (V, E)$, the size of G is defined as Size(G) = $(S_T(G), S_I(G), S_F(G))$, where $S_T(G) = \sum_{u \neq v} T_B(u, v)$, $S_I(G) = \sum_{u \neq v} I_B(u, v)$, $S_F(G) = \sum_{u \neq v} F_B(u, v)$.

The degree of a vertex x in an SVNG, G = (A, B) is defined to be sum of

the weights of the edges incident at x. It is denoted by $d_G(u)$ and is equal to $(\sum_{u \neq v} T_B(u, v), \sum_{u \neq v} I_B(u, v), \sum_{u \neq v} F_B(u, v))$ for all v adjacent to u in G^* .

Two vertices x and y are said to be neighbors in SVNG if either one of the following conditions hold

 $T_{B}(x, y) > 0, I_{B}(x, y) > 0, F_{B}(x, y) > 0$ $T_{B}(x, y) = 0, I_{B}(x, y) > 0, F_{B}(x, y) > 0$ $T_{B}(x, y) > 0, I_{B}(x, y) = 0, F_{B}(x, y) > 0$ $T_{B}(x, y) > 0, I_{B}(x, y) > 0, F_{B}(x, y) = 0$ $T_{B}(x, y) = 0, I_{B}(x, y) = 0, F_{B}(x, y) > 0$ $T_{B}(x, y) = 0, I_{B}(x, y) > 0, F_{B}(x, y) = 0$ $T_{B}(x, y) = 0, I_{B}(x, y) > 0, F_{B}(x, y) = 0$

 $T_B(x, y) > 0$, $I_B(x, y) = 0$, $F_B(x, y) = 0$ for x, $y \in A$ Let G and G' be single valued neutrosophic graphs with underlying sets V and V' respectively. A homomorphism of single valued neutrosophic graphs, $h : G \to G'$ is a map $h : V \to V'$ which satisfies

 $T_A(u) \le T_{A'}(h(u)), I_A(u) \le I_{A'}(h(u)), F_A(u) \le F_{A'}(h(u)) \text{ for all } u \in V$

 $T_B(u,v) \le T_{A'}(h(u),h(v)), \quad I_B(u,v) \le I_{B'}(h(u),h(v)), \quad F_B(u,v) \le F_{B'}(h(u),h(v))$ for all $u, v \in V$.

Let G and G' be single valued neutrosophic graphs with underlying sets V and V' respectively. An isomorphism of single valued neutrosophic graphs, $h : G \to G'$ is a bijective map $h : V \to V'$ which satisfies

 $T_A(u) = T_{A'}(h(u)), I_A(u) = I_{A'}(h(u)), F_A(u) = F_{A'}(h(u))$ for all $u \in V$

 $T_B(u, v) = T_{B'}(h(u), h(v)), \quad I_B(u, v) = I_{B'}(h(u), h(v)), \quad F_B(u, v) = F_{B'}(h(u), h(v))$ for all $u, v \in V$. Then G is said to be isomorphic to G'. Two isomorphic graphs are given below A weak isomorphism of single valued neutrosophic graphs, $h : G \to G'$ is a map $h : V \to V'$ which is a bijective homomorphism that satisfies

 $T_A(u) = T_{A'}(h(u)), I_A(u) = I_{A'}(h(u)), F_A(u) = F_{A'}(h(u))$ for all $u \in V$ A co-weak isomorphism of single valued neutrosophic graphs, $h : G \to G'$ is a map $h : V \to V'$ which is a bijective homomorphism that satisfies

 $T_B(u,v) = T_{B'}(h(u),h(v)), I_B(u,v) = I_{B'}(h(u),h(v)), F_B(u,v) = F_{B'}(h(u),h(v))$ for all $u, v \in V$.

The busy value of the vertex x in G is $BV(x) = (BV_{T_A}(x), BV_{I_A}(x), BV_{F_A}(x)) = (\sum_i T_A(x) \land T_A(x_i), \sum_i I_A(x) \land I_A(x_i), \sum_i F_A(x) \lor F_A(x_i))$ where x_i are the neighbours of x and the busy value of G is $BV(G) = \sum_i BV(x_i)$ where x_i are the vertices of G.

A vertex in a G is a busy vertex if $(T_A, I_A, F_A)(x) \le d_G(x)$.

Let G be a graph with vertex set V(G) and edge set E(G). The **1–quasitotal graph**, (denoted by $Q_1(G)$) of G is defined as follows:

The vertex set of $Q_1(G)$, that is $V(Q_1(G)) = V(G) \cup E(G)$.

Two vertices x, y in $V(Q_1(G))$ are adjacent if they satisfy one of the following conditions:

(i). x, y are in V(G) and $(x,y) \in E(G)$.

(ii). x, y are in E(G) and x, y are incident in G.

Let G : (A,B) be a SVN graph with the underlying crisp graph $G^* = (V, E)$. The vertices and edges of G are taken together as vertex set of $sd(G) = (A_{sd}, B_{sd})$, each edge 'e' in G is replaced by a new vertex and that vertex is made as a adjacent of those vertices which lie on 'e' in G. Here A_{sd} is a SVN subset defined on $V \cup E$ as

 $(T_A, I_A, F_A)_{sd}(x) = (T_A, I_A, F_A)(x) \qquad \text{if } x \in V$

 $= (T_B, I_B, F_B)(x)$ if $x \in E$

The SVN relation B_{sd} on $V \cup E$ is defined as

 $T_{B_{sd}}(x,y) = T_A(x) \wedge T_B(y) \qquad \text{ if } x \in V \text{ and } y \in E$

= 0 otherwise

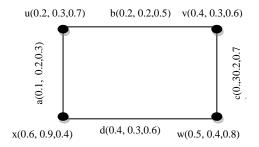
$$I_{B_{sd}}(x, y) = I_A(x) \land I_B(y)$$
 if $x \in V$ and $y \in E$

= 0 otherwise

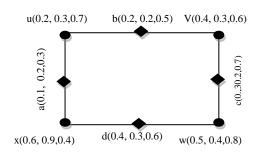
$$F_{B_{sd}}(x, y) = F_A(x) \lor F_B(y)$$
 if $x \in V$ and $y \in E$

= 0 otherwise

 $(T_{B_{sd}}, I_{B_{sd}}, F_{B_{sd}})(x, y)$ is a SVN relation on $(T_{A_{sd}}, I_{A_{sd}}, F_{A_{sd}})$ and hence the pair sd(G) = (A_{sd}, B_{sd}) , is a SVN graph. This pair is said as subdivision SVN graph of G.



SVN Graph - G



Subdivision Graph - sd(G)

In the above sd(G), (a,u) = (0.1, 0.2, 0.7), (u,b) = (0.2, 0.2, 0.7), (b,v) = (0.2, 0.2, 0.6), (v,c) = (0.3,0.2,0.7), (c,w) = (0.3,0.2,0.8), (w,d) = (0.4,0.3,0.8), (d,x) = (0.4,0.3,0.6),(x,a) = (0.1, 0.2, 0.4)

Let G=(A,B) be a SVN graph with its underlying crisp graph $G^* = (V, E)$. The pair tl(G) = (A_{tl}, B_{tl}) of G is defined as follows. The vertex set of tl(G) is $V \cup E$. The SVN subset A_{tl} is defined on $V \cup E$ as,

$$(T_A, I_A, F_A)_{tl}(x) = (T_A, I_A, F_A)(x) \quad \text{if } x \in V$$

$$= (T_B, I_B, F_B)(x) \quad \text{if } x \in E$$
The SVN relation B_{tl} on $V \cup E$ is defined as
$$T_{B_{tl}}(x, y) = T_B(x, y), I_{B_{tl}}(x, y) = I_B(x, y), F_{B_{tl}}(x, y) = F_B(x, y) \text{ if } (x, y) \in E$$

$$T_{B_{tl}}(x, y) = T_A(x) \wedge T_B(y) \quad \text{if } x \in V \text{ and } y \in E$$

$$= 0 \text{ otherwise}$$

$$I_{B_{tl}}(x, y) = I_A(x) \wedge I_B(y) \quad \text{if } x \in V \text{ and } y \in E$$

$$= 0 \text{ otherwise}$$

$$F_{B_{tl}}(x, y) = F_A(x) \vee F_B(y) \quad \text{if } x \in V \text{ and } y \in E$$

$$= 0 \text{ otherwise}$$

$$T_{B_{tl}}(e, f) = T_B(e) \wedge T_B(f) \quad \text{if } e, f \in E \text{ & they have a vertex in common}$$

$$= 0 \text{ otherwise}$$

$$I_{B_{tl}}(e, f) = I_B(e) \wedge I_B(f) \quad \text{if } e, f \in E \text{ & they have a vertex in common}$$

$$= 0 \text{ otherwise}$$

$$F_{B_{tl}}(e, f) = F_B(e) \vee F_B(f) \quad \text{if } e, f \in E \text{ & they have a vertex in common}$$

$$= 0 \text{ otherwise}$$

$$T_{B_{tl}}(e, f) = F_B(e) \vee F_B(f) \quad \text{if } e, f \in E \text{ & they have a vertex in common}$$

$$= 0 \text{ otherwise}$$
Thus by the definition B_{tl} is a single valued neutrosophic relation on A_{tl} . Hence the pair $tl(G) = (A_{tl}, B_{tl})$ is a SVN graph and is termed as Total Single Valued Neutrosophic Graph.
I. $1 - QUASI TOTAL SINGLE VALUED NEUTROSOPHIC GRAPH$
Definition 3.1 Let $G = (A,B)$ be a SVN graph with its underlying crisp graph $G^* = (V, E)$. The pair $Q_1 tl(G) = (A_{q_1 tl}, B_{q_1 tll})$ of G is defined as follows. The vertex set of $Q_1 tl(G)$ is $V \cup E$.
The SVN subset A_{01t} is defined on $V \cup E$ as,
$$(T_A, I_A, F_A)_{Q_1tl}(x) = (T_A, I_A, F_A)(x) \quad \text{if } x \in V$$

$$= (T_B, I_B, F_B)(x) \quad \text{if } x \in E$$
The SVN relation $B_{q_1 tl}$ on $V \cup E$ is defined as
$$T_{B_{q_1 tl}}(x, y) = T_B(x, y), I_{B_{q_1 tll}}(x, y) = I_B(x, y), F_{B_{q_1 tl}}(x, y) = F_B(x, y) \text{ if } (x, y) \in E$$

 $T_{B_{Q_1tl}}(e, f) = T_B(e) \wedge T_B(f)$ if $e, f \in E \& they have a vertex in common = 0 otherwise$

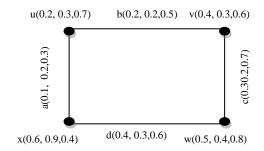
 $I_{B_{Q_1tl}}(e, f) = I_B(e) \land I_B(f)$ if $e, f \in E \& they have a vertex in common$ = 0 otherwise

 $F_{B_{Q_1tl}}(e, f) = F_B(e) \vee F_B(f)$ if e, $f \in E \& t$ hey have a vertex in common = 0 otherwise

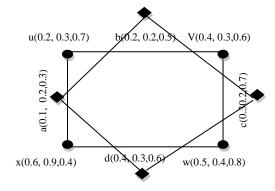
Thus by the definition B_{Q1tl} is a single valued neutrosophic relation on A_{Q1tl}. Hence the pair Q_1 tl(G) = (A₀₁tll, B₀₁tl) is a SVN graph and is termed as 1 – Quasi Total Single Valued Neutrosophic Graph.

pair

The



SVN Graph - G



In the above Q_1 tl(G), (u, v) = (0.2, 0.2, 0.5), (v, w) = (0.3, 0.2, 0.7), (w, x) = (0.4, 0.3, 0.6), (x, u) = (0.1, 0.2, 0.3), (a, b) = (0.1, 0.2, 0.5), (b, c) = (0.2, 0.2, 0.7), (c, d) = (0.3, 0.2, 0.7), (d, a) = (0.1, 0.2, 0.6)

Properties of 1 – Quasi Total SVN Graph Theorem 3.2

Let G=(A,B) be SVN graph and tl(G) is its Total SVN graph, order of tl(G) = order(G) + size(G).

 $\begin{array}{l} \mbox{Proof}: By definition of Q_1 tl(G), vertex set of Q_1 tl(G) is V \cup E. \\ \mbox{Order of } Q_1 tl(G) = \left(O_T \left(\ Q_1 tl(G) \right), O_I \left(\ Q_1 tl(G) \right), O_F \left(\ Q_1 tl(G) \right) \right) \\ = \left(\sum_{x \in V \cup E} T_{A_{Q_1 tl}}(x), \sum_{x \in V \cup E} I_{A_{Q_1 tl}}(x), \sum_{x \in V \cup E} F_{A_{Q_1 tl}}(x) \right) \\ = \left(\sum_{x \in V} T_{A_{Q_1 tl}}(x) + \sum_{x \in E} T_{A_{Q_1 tl}}(x), \sum_{x \in V} I_{A_{Q_1 tl}}(x) + \sum_{x \in E} I_{A_{Q_1 tl}}(x), \sum_{x \in V} F_{A_{Q_1 tl}}(x) \right) \\ = \left(\sum_{x \in V} T_{A_{Q_1 tl}}(x), \sum_{x \in E} T_{A_{Q_1 tl}}(x), \sum_{x \in E} F_{A_{Q_1 tl}}(x), \sum_{x \in V} F_{A_{Q_1 tl}}(x) \right) \\ = \left(\sum_{x \in E} T_{A_{Q_1 tl}}(x), \sum_{x \in E} I_{A_{Q_1 tl}}(x), \sum_{x \in E} F_{A_{Q_1 tl}}(x) \right) \\ = order(G) + size (G) . \\ \mbox{Theorem } 3.3 : Let \ G = (A,B) \ be \ SVN \ graph \ and \ tl(G) \ is \ its \ Total \ SVN \ graph, \ size \ of Q_1 \ tl(G) \\ = size(G) + \left(\sum_{x,y \in E} T_{B}(x) \land T_B(y), \sum_{x,y \in E} I_B(x) \land I_B(y), \sum_{x,y \in E} F_B(x) \lor F_B(y) \right) \\ \mbox{Proof}: \ size \ of \ Q_1 tl(G) = \left(S_T \left(Q_1 tl(G) \right), S_I \left(Q_1 tl(G) \right), S_F \left(Q_1 tl(G) \right) \right) \\ = \left(\sum_{x,y \in V \cup E} T_{B_{Q_1 tl}}(x,y), \sum_{x,y \in V \cup E} I_{B_{Q_1 tl}}(x,y), \sum_{x,y \in V \cup E} F_{B_{Q_1 tl}}(x,y) \right) \end{array}$

$$= \left(\left(\sum_{x,y \in V} T_{B_{Q_1tl}}(x,y), \sum_{x,y \in V} I_{B_{Q_1tl}}(x,y), \sum_{x,y \in V} F_{B_{Q_1tl}}(x,y) \right) \\ + \left(\sum_{x,y \in E} T_{B_{Q_1tl}}(x,y), \sum_{x,y \in E} I_{B_{Q_1tl}}(x,y), \sum_{x,y \in E} F_{B_{Q_1tl}}(x,y) \right) \right) \\ = \left(\sum_{x,y \in V} T_{B_{Q_1tl}}(x,y), \sum_{x,y \in V} I_{B_{Q_1tl}}(x,y), \sum_{x,y \in V} F_{B_{Q_1tl}}(x,y) \right) \\ + \left(\sum_{x,y \in E} T_B(x) \wedge T_B(y), \sum_{x,y \in E} I_B(x) \wedge I_B(y), \sum_{x,y \in E} F_B(x) \vee F_B(y) \right) \\ = size(G) + \left(\sum_{x,y \in E} T_B(x) \wedge T_B(y), \sum_{x,y \in E} I_B(x) \wedge I_B(y), \sum_{x,y \in E} F_B(x) \vee F_B(y) \right)$$

Theorem 3.4 : $d_{Q1tl(G)}(u) = d_G(u)$ if $u \in V$, $d_{Q1tl(G)}(y_i) =$ busy value of y_i in $Q_1tl(G)$ if $y_i \in E$. **Proof :** By the definition of degree of a vertex given Case 1: Let $x \in V$,

$$d_{Q_{1}tl(G)}(x) = \left(\sum_{a \in V} T_{B_{Q_{1}tl}}(x, a), \sum_{a \in V} I_{B_{Q_{1}tl}}(x, a), \sum_{a \in V} F_{B_{Q_{1}tl}}(x, a)\right)$$
$$= \left(\sum_{y \in E} T_{B}(y), \sum_{y \in E} I_{B}(y), \sum_{y \in E} F_{B}(y)\right)$$

 $=d_G(x)$ Case 2: If $y_i \in E$,

$$d_{Q_1 tl(G)}(y_i) = \left(\sum_{b \in E} T_{B_{tl}}(y_i, b), \sum_{b \in E} I_{B_{tl}}(y_i, b), \sum_{b \in E} F_{B_{tl}}(y_i, b)\right)$$
$$= + \left(\sum_{b \in E} T_B(y_i) \wedge T_B(b), \sum_{b \in E} I_B(y_i) \wedge I_B(b), \sum_{b \in E} F_B(y_i) \vee F_B(b)\right)$$

= busy value of y_i in Q_1 tl(G).

Theorem 3.5 : 1- Quasi Total Single Valued Neutrosophic of any Single Valued Neutrosophic is disconnected.

Proof: Let G = (A, B) be a SVN graph. The SVN vertex set of $Q_1tl(G)$ is $V \cup E$ where V and E are vertex set and Edge set of G respectively, and the SVN relation is only defined between $x, y \in V$ and $e, f \in E$. As there is no SVN relation between $x \in V$ and $e \in E$ of elements in the vertex set of $Q_1tl(G)$, there is no path that connects u and e in $Q_1tl(G)$. Hence, $Q_1tl(G)$ is disconnected graph.

Theorem 3.6 : If G is a SVN graph then sd(G) is weak isomorphic toQ₁ tl(G).

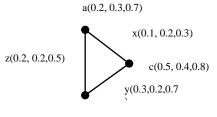
Proof : Let G = (A,B) be a SVN graph with its underlying crisp graph $G^* = (V,E)$. By the definition of sd(G), A_{sd} is a SVN subset defined on $V \cup E$ as

$$(T_A, I_A, F_A)_{sd}(x) = (T_A, I_A, F_A)(x) \qquad \text{if } x \in V$$

· D	D D:	if $x \in E$	(1)	(1)		
Su		$f \cup E$ is defined as $f(x, y) = T_A(x) \wedge T_B(y)$	$\text{if } x \in V \text{ and } y \in$	E		
= 0 otherwise	I _{Bsd} (x	$(x, y) = I_A(x) \wedge I_B(y)$	$ \text{if } x \in V \text{ and } y \in$	E		
= 0 otherwise	Б_ (v	$(x, y) = F_A(x) \vee F_B(y)$	if x ∈ V and y ∈	F		
= 0 otherwise	34		li x C V aliu y C	L		
Using (1) in the al	-	ation, y) = $T_{A_{sd}}(x) \wedge T_{A_{sd}}(y)$) if $x \in V$ and y	∈E		
= 0 otherwise	34	5u 5u				
= 0 otherwise	$I_{B_{sd}}(x, y)$	$\mathbf{y}) = \mathbf{I}_{\mathbf{A}_{\mathrm{sd}}}(\mathbf{x}) \wedge \mathbf{I}_{\mathbf{A}_{\mathrm{sd}}}(\mathbf{y})$) if $x \in V$ and $y \in V$	= E		
= 0 otherwise	F _{Bsd} (x, y	$\mathbf{y}) = \mathbf{F}_{\mathbf{A}_{\mathrm{sd}}}(\mathbf{x}) \vee \mathbf{F}_{\mathbf{A}_{\mathrm{sd}}}(\mathbf{y})$	$if x \in V and y$	∈E		
Define a map 'g' from sd(G) to Q_1 tl(G) as identity map $g: V \cup E \rightarrow V \cup E$, g be bijection satisfying						
$(T_A, I_A, F_A)_{Q_1 t l}(g(x)) = (T_A, I_A, F_A)_{Q_1 t l}(x) = (T_A, I_A, F_A)(x) = (T_A, I_A, F_A)_{sd}(x)$ if $x \in V$						
$(T_A, I_A, F_A)_{Q_1tl}(g(x)) = (T_A, I_A, F_A)_{Q_1tl}(x) = (T_B, I_B, F_B)(x) = (T_A, I_A, F_A)_{sd}(x)$ if $x \in E$ That is $(T_A, I_A, F_A)_{Q_1tl}(g(x)) = (T_A, I_A, F_A)_{sd}(x)$ if $x \in V \cup E$						
Case 1:						
If $x, y \in V$, $(T_B, I_B, F_B)_{tl}(g(x), g(y)) = (T_B, I_B, F_B)_{Q_1tl}(x, y) = (T_B, I_B, F_B)(x, y)$ if $x, y \in V$. By the definition of sd(G), $(T_B, I_B, F_B)_{sd}(x, y) = 0$ if $x, y \in V$						
That implies $(T_B, I_B, F_B)_{sd}(x, y) \le (T_B, I_B, F_B)_{tl}(g(x), g(y))$ if $x, y \in V$						
Case 2: If $x = e_i, y = e_i \in E$ then						
$T_{B_{Q_1tl}}(e_i, e_j) = \min\{T_B(e_i), T_B(e_j)\}$ if e_i, e_j have a vertex in common						
$I_{B_{Q_1tl}}(e_i, e_j) = \min\{I_B(e_i), I_B(e_j)\}$ if e_i, e_j have a vertex in common						
$F_{B_{Q_1tl}}(e_i, e_j) = \max\{F_B(e_i), F_B(e_j)\}$ if e_i , e_j have a vertex in common = 0 otherwise						
		$T_{B_{sd}}(e_i, e_j) \le T_{B_{tl}}(e_i, e_j) \le I_{B_{tl}}(e_i, e_j)$,, ,			
		$F_{B_{sd}}(e_i, e_j) \le F_{B_{tl}}(e_i)$	(e_i, e_j) if $e_i, e_j \in E$			
Thus	from	the $T_{B_{sd}}(x, y) \le T_{B_{tl}}(x, y)$	cases v) if x, $v \in V \cup E$	we	get	
		$I_{B_{sd}}(x, y) \le I_{B_{tl}}(x, y)$	y) if x, y ∈ V ∪ E			
Therefore g. sd(G	$) \rightarrow 0. th$	$F_{B_{sd}}(x, y) \le F_{B_{tl}}(x, y)$				
Therefore $g: sd(G) \rightarrow Q_1 tl(G)$ is a weak isomorphism.						
IV. SINGLE VALUED NEUTROSOPHIC LINE GRAPH Definition 4.1 : Let $G = (A, B)$ be a SVN graph with the underlying graph $G^* = (V, E)$. The						

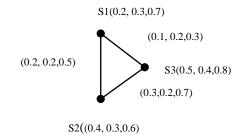
Definition 4.1 : Let G = (A, B) be a SVN graph with the underlying graph $G^* = (V, E)$. The SVN line graph of G is L(G) = (P, Q) with the underlying graph (Z, W) where the vertex set is $Z = \{S_x = \{x\} \cup \{u_x, v_x\}: x \in E, u_x, v_x \in V, x = (u_x, v_x)\}$ and $W = \{(S_x, S_y): S_x \cap S_y \neq \emptyset, x, y \in E, x \neq y\}$ $P(S_x) = (T_B(x), I_B(x), F_B(x))$

 $Q(S_x, S_y) = (T_B(x) \land T_B(y), I_B(x) \land I_B(y), F_B(x) \lor F_B(y)) \text{ for all } (S_x, S_y) \in W.$ Example:



b((0.4, 0.3,0.6)

SVN Graph - G



Line Graph – L(G)

Theorem 4.2: if G1 = (A1, B1) and G2 = (A2, B2) are the two isomorphic SVN graphs then their SVN line graphs are also isomorphic.

Proof: Give G1 and G2 are the two isomorphic SVN graphs with the underlying set S1 and S2 respectively, i.e., there exists a bijective map $h: S1 \rightarrow S2$ satisfying $T_{A_1}(x) = T_{A_2}(h(x)); I_{A_1}(x) = I_{A_2}(h(x)); F_{A_1}(x) = F_{A_2}(h(x)) \text{ for all } x \in S_1$ $T_{B_1}(x) = T_{B_2}(h(x), h(y)); T_{B_1}(x) = T_{B_2}; T_{B_1}(x) = T_{B_2}(h(x), h(y)) \text{ for all } x, y \in S_1.$

Let L(G1) = (P1,Q1) and L(G2) = (P2,Q2) be the line graphs of G1 and G2 respectively. Consider an $x \in E_1$. Let $x = (u_x, v_x)$. As $h : S1 \to S2$ is one to one, onto, $h(x) = (h(u_x), h(v_x)) \in E_2$

Define : Z1
$$\rightarrow$$
 Z2 as $g(S_x) = S_{h(x)}$

As h is one to one and onto, g is well defined and one to one onto mapping. Consider $T_{P_1}(S_x) = T_{B_1}(x) = T_{B_1}(u_x, v_x) = T_{B_2}(h(u_x), h(v_x)) = T_{B_2}(h(x))$ $T_{P_1}(S_x) = T_{P_2}(S_{h(x)}) = T_{P_2}(g(S_x))$ for all $x \in Z_1$ Similarly, $I_{P_1}(S_x) = I_{P_2}(g(S_x))$ and $F_{P_1}(S_x) = F_{P_2}(g(S_x))$ for all $x \in Z_1$ (1) $T_{Q_1}(S_x, S_y) = T_{B_1}(x) \wedge T_{B_1}(y)$ for all $(S_x, S_y) \in W_1$ $= T_{B_1}(u_x, v_x) \wedge T_{B_1}(u_y, v_y)$ $= T_{B_2}(h(u_x), h(v_x)) \wedge T_{B_2}(h(u_y), h(v_y))$ $= T_{B_2}(h(x)) \wedge T_{B_2}(h(y))$

 $= T_{Q_2}(g(S_x), g(S_y)) \text{ for all } x, y \in E_1$ $T_{Q_1}(S_x, S_y) = T_{Q_2}(g(S_x), g(S_y)) \text{ for all } S_x, S_y \in Z_1$ Similarly,

 $I_{Q_1}(S_x, S_y) = I_{Q_2}(g(S_x), g(S_y)), F_{Q_1}(S_x, S_y) = F_{Q_2}(g(S_x), g(S_y))$ for all $S_x, S_y \in Z_1$ (2) From equations (1) and (2), L(G1) and L(G2) are isomorphic SVN line graphs when G1 and G2 are the two isomorphic SVN graphs.

3. REFERENCES

- [1] Akram M., *Operations on Single Valued Nutrosophic Graphs*, Journal of Uncertain Systems, January 2017.
- [2] Akram, M., *Bipolar fuzzy graphs*, Information Sciences, 181 (2011), 5548-5564.
- [3] Broumi, S., Talea, M., A. Bakali and F. Smarandache, *Single-valued neutrosophic graphs*, Journal of New Theory, vol.10, pp.86 101, 2016.
- [4] J. Malarvizhi and G. Divya, *Isomorphism and Complement on Single Valued Neutrosophic Graphs*, American International Journal of Research in Science, Technology, Engineering and Mathematics - 2019.
- [5] Nagoorgani and J. Anu, *Properties on Total and Middle Intuitionstic fuzzy graph*, International Journal of Fuzzy Mathematical Archive, 2015.
- [6] S. Broumi, M. Talea, A. Bakali, P. K.Singh, F. Smarandache, *Energy and Spectrum Analysis of Interval Valued Neutrosophic Graph using MATLAB*, Neutrosophic Sets and Systems, Vol. 24, 2019, 46-60.
- [7] Smarandache, F., A Unifying field in logics neutrosophy: Neutrosophic probability, set and logic, Re-hoboth: American Research Press, 1998.
- [8] Bhavanari Satyanarayana, Devanaboina Srinivasalu, Kuncham Syam Prasad, *Line graphs and Quasi total Graphs*, International Journal of Computer Applications, Vol. 105, No. 3, Nov 2014.
- [9] John N. Moderson, *Fuzzy Line Graphs*, Elsevier Science Publishers.
- [10] Fekadu Tesgera Agama, Venkata Naga Srinivasa Rao Repalle, Pure and Applied Mathematic Journal, Jan 2020.
- [11] M. Akram, R. Parvathi, Properties of Intitutionistic Fuzzy Line Graphs, Notes on Intitutionistic Fuzzy Sets, Vol.18, 2012.