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Abstract :   For a graph 𝑮(𝑽, 𝑬), the 𝑺-radial set, 𝑩𝑹(𝑺), is defined for any set 𝑺 ⊆ 𝑽, as 

the set of vertices 𝒖 ∈ 𝑽\𝑺 which are at a distance of radius of 𝑮 from some vertex 𝒗 ∈ 𝑺. 

The Max-Radial number of 𝑮 is the parameter which is defined as {|𝑩𝑹(𝑺)| − |𝑺|𝑺  
𝒎𝒂𝒙 }. 

The study on this parameter faces the challenge of placing the maximum number of 

maximal length strings with certain conditions in any graph model. In this paper, we study 

the varied properties of this parameter. We characterize the extremal graphs for the Max-

Radial concept in graphs. Also we prove the existence of graphs with given order and Max-

Radial number. 
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1. INTRODUCTION 

 

 Let us first introduce the following game, which is a two person zero sum game. Player 

X will provide a graph model 𝐺 of order 𝑛 and a set of boxes 𝑀1, 𝑀2,…. 𝑀𝑛 where 𝑀𝑖 

contains enough number of strings of length 𝑖 with a red end R and a blue end B with 𝑖 − 1 

flexible joints in between them (isomorphic to path 𝑃𝑖+1). A string is depicted here for more 

clarity. 

 

 

 

     

 Now player Y has to select a box 𝑀𝑙 such that 𝑙 should be maximum with the 

property that if R is fixed at any vertex of 𝐺, then the string must fit a path in 𝐺. Player Y 

gains Rs 2 if he succeeds in choosing such 𝑙, otherwise he loses Rs 2 to Player X and the 

game continues after Player X reveals the value of 𝑙. 
 Next Player Y has to select a set 𝑆 of vertices in 𝐺. He pays Re 1  for each distinct of  

𝑆 to Player X. Then he has to fix the R end of strings of 𝑀𝑙 with the following conditions. 

(i) Any number of R end of 𝑀𝑙 strings can be fixed at a vertex of  𝑆. 

(ii) Each string must fit with any 𝑢𝑣 geodesic path of 𝐺 where 𝑢 ∈ 𝑆 & 𝑣 ∈ 𝐺\𝑆. 

R B 𝑀4 - String 
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 For each distinct vertex of 𝐺\𝑆 at which B is fixed, Player Y receives Rs 1 from 

Player X. 

 Mathematically speaking, maximum profit of Player Y=Max-Radial number of 𝐺 + 

2. It is clear that if Player Y choses 𝑙 to be the radius of 𝐺, then he wins Rs 2. 

  

 Let us recall the basic terminology before defining the Max-Radial number. 

 

In this paper, the graphs considered are connected, undirected and  finite graphs. For other 

notation and terminology, we follow [5, 8]. Let 𝐺 be a graph of order 𝑛. A vertex 𝑣 ∈ 𝑉(𝐺) is 

called a  full vertex, if it is adjacent to all other vertices. The minimum and maximum degree 

of 𝐺 are denoted by 𝛿(𝐺) and ∆(𝐺) respectively.  

 

The distance 𝑑(𝑢, 𝑣) between two vertices 𝑢 and 𝑣 in G is the length of a shortest path 

joining them. The eccentricity 𝑒(𝑣) of a vertex 𝑣 in a connected graph G is maximum 

distance 𝑑(𝑢, 𝑣) for all 𝑢 in 𝐺. The radius 𝑟𝑎𝑑(𝐺) is the minimum eccentricity of the 

vertices. The diameter 𝑑(𝐺) is the maximum eccentricity of the vertices. For every two 

vertices 𝑢 and 𝑣 in a graph 𝐺, a 𝑢 − 𝑣 geodesic is a shortest path between 𝑢 and 𝑣. For 

further reference on distance in graphs, one can refer [6].  

For a subset 𝑆 of the vertex set  𝑉(𝐺), let < 𝑆 > denote the induced subgraph of 𝐺 induced 

by 𝑆. For any vertex 𝑣 ∈ 𝑉(𝐺), the open neighborhood  𝑁(𝑣) is the set of all vertices 

adjacent to 𝑣. That is, 𝑁(𝑣) = {𝑢 ∈ 𝑉(𝐺): 𝑢𝑣 ∈ 𝐸(𝐺)}. The closed neighborhood 𝑁[𝑣] of  𝑣 

is defined by 𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣}. An 𝑛 -factor of 𝐺 is a 𝑛-regular spanning subgraph of 𝐺. 

 We present the following game in literature which inspired us to work on Max-Radial 

number of a graph. We are allowed to buy as many tokens as we like, at a cost of $1 each. 

For example, suppose that we buy 𝑘 tokens. We then place the tokens on some subset of 𝑘 

vertices of 𝐺. For each vertex of 𝐺 which has no token on it, but is adjacent to a vertex with a 

token on it, we  receive $1. Our objective is to maximize our profit, that is, the total value 

received minus the cost of the tokens bought. Notice that we do not receive any credit for the 

vertices on which we place a token.  

The definition of the A-differential of a set was first given by Mc Rae and Parks, while the 

definition of  𝜕(𝑆) was given by S.T Hedetniemi about ten years ago [12] . The parameter 

𝜕(𝑆) is also considered by Goddard and Henning [7], who denoted 𝜕(𝑆). The minimum 

differential of an independent set has been considered by Zhang [13], who showed that this 

parameter can be computed in polynomial time.  

For a set 𝑆 ⊆ 𝑉, we define: 𝐼(𝑆) = 𝑆 − 𝑁(𝑆), the isolates in 〈𝑆〉, the vertices in 𝑆 having no 

neighbors in 𝑆, 

𝐴(𝑆) = 𝑆 ∩ 𝑁(𝑆), the non-isolates in 〈𝑆〉, the vertices in 𝑆 having a neighbor in 𝑆,  

𝐵(𝑆) = (𝑉 − 𝑆) ∩ 𝑁(𝑆), the boundary of 𝑆, the vertices in 𝑉 − 𝑆 dominated by 𝑆. 
 

It is easy to observe that for a disconnected graph 𝐺 with components 𝐺1, 𝐺2, 𝐺3,…., 𝐺𝑛, 

𝜕(𝐺) = 𝜕(𝐺1) + 𝜕(𝐺2) + 𝜕(𝐺3) + ⋯ + 𝜕(𝐺𝑛). 
Motivated  by this concept,  KM. Kathiresan  and  M. Mathan [9] introduced the concept of 

R-differential in graphs by taking 𝑆-radial set in place of boundary of 𝑆. For a set 𝑆 ⊆  𝑉, we 

define 𝑆-radial set 𝐵𝑅(𝑆) to be the set of vertices 𝑢 ∈ 𝑉\𝑆 such that 𝑑(𝑢, 𝑣) = 𝑟 for some 

𝑣 ∈ 𝑆. The R-differential of a set S is defined as 𝜕𝑅(𝑆) = |𝐵𝑅(𝑆)| − |𝑆|. The R-differential of 

the graph 𝐺 is 𝑚𝑎𝑥{𝜕𝑅(𝑆) ∶  𝑆 ⊆ 𝑉}. The R-differential is denoted by  𝜕𝑅.   

We call R-differential as Max-Radial number to avoid ambiguity arising out of the 

resemblance of the former term with other familiar mathematical concept.   
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In this paper, we prove some basic results on the Max-Radial number in graphs. We 

characterize the extremal graphs for the Max-Radial number concept in graphs. Also we 

prove the existence graphs with given order and Max-Radial number. 

 

 

2. MAIN RESULTS 

From the definition of Max-Radial number in graphs, the following facts can be easily 

verified. 

 

Fact 2.1 For a complete graph 𝐾𝑛 , 𝜕𝑅(𝐾𝑛) = 𝑛 − 2. 

Fact 2.2  

For any path 𝑃𝑛,  𝜕𝑅(𝑃𝑛) = {
1     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑     
0     𝑖𝑓  𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 .  

 

 

Fact 2.3 For any cycle Cn, n≥3, 

 𝜕𝑅(𝐶𝑛) = {
⌊

𝑛

3
⌋      𝑖𝑓  𝑛  𝑖𝑠  𝑜𝑑𝑑        

0     𝑖𝑓  𝑛  𝑖𝑠  𝑒𝑣𝑒𝑛 .  
 

Fact 2.4    For the star graph K1,n , 𝜕𝑅(𝐾1,𝑛) = 𝑛 − 2. 

 

Fact 2.5  For the complete bipartite graph Km,n , 𝜕𝑅(𝐾𝑚,𝑛) = 𝑚 + 𝑛 − 4, 𝑚 ≥ 2 and 

𝑛 ≥ 2.   

 

Fact 2.6 For a wheel graph 𝑊𝑛, 𝑛 ≥ 4, 𝜕𝑅(𝑊𝑛) = 𝑛 − 2.   

 

Fact 2.7 𝜕𝑅(𝐺) < 𝑛 − 1 for any graph 𝐺. 

Since ≠ ∅ , 𝐵𝑅(𝑋) ⊂ 𝑉 − 𝑋. Therefore |𝐵𝑅(𝑋)| < 𝑛 − 1. 

 

Fact 2.8 If 𝑋 is a 𝜕𝑅 − 𝑠𝑒𝑡 of 𝐺, then 𝜕𝑅(𝐺) = 0 if and only if  |𝐵𝑅(𝑋)| = |𝑋| 
 

Therefore, for any graph 𝐺,  𝜕𝑅(𝐺) varies between 0 and 𝑛 − 2. 

 

Let us first introduce the definition of radial graph before proceeding the theorem.  

 

Two vertices of a graph are said to be radial to each other if the distance between them is 

equal to the radius of the graph. The radial graph of a graph 𝐺, denoted by 𝑅(𝐺), has the 

vertex set as in 𝐺 and two vertices are adjacent in 𝑅(𝐺) if and only if they are radial in 𝐺. If  

𝐺 is disconnected, then two vertices are adjacent in 𝑅(𝐺) if they belong to different 

components of 𝐺. A graph 𝐺 is called a radial graph if 𝑅(𝐺) = 𝐺 for some graph 𝐻. 

 Further details on radial graph one can refer [1,10]. The following results have been 

proved in [10]. 

 

Result 2.9 Let 𝑃𝑛 be any path on 𝑛 ≥ 5 vertices, then 𝑅(𝑃𝑛) =

{
(

𝑛

2
) 𝐾2                𝑖𝑓 𝑛  𝑖𝑠  𝑒𝑣𝑒𝑛

𝑃3 ∪ (
𝑛−3

2
) 𝐾2   𝑖𝑓 𝑛  𝑖𝑠  𝑜𝑑𝑑

. 

 

Result 2.10 Let 𝐶𝑛 be any cycle on 𝑛 ≥ 4 vertices, then  
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𝑅(𝐶𝑛) = {
(

𝑛

2
) 𝐾2     𝑖𝑓 𝑛  𝑖𝑠  𝑒𝑣𝑒𝑛

≅ 𝐶𝑛         𝑖𝑓  𝑛  𝑖𝑠  𝑜𝑑𝑑
.  

 

Result 2.11 𝑅(𝐾𝑚,𝑛) = 𝐾𝑚 ∪ 𝐾𝑛 

 

Result 2.12 For a graph 𝐺 of order 𝑛, 𝑅(𝐺) = 𝐾𝑛 if and only if  either 𝐺 or 𝐺̅ is 𝐾𝑛. 

  

Result 2.13 If  𝑟(𝐺) > 1, then 𝑅(𝐺) ⊆ 𝐺̅. 

 

Result 2.14 Every graph 𝐺 of order 𝑛 with ∆(𝐺) = 𝑛 − 1 is a radial graph of itself. 

 

Next we prove some characterization theorems. We note that Radial graph 𝑅(𝐺) of a 

connected graph 𝐺 contains no isolated vertices. 

 

Theorem 2.15  

         For any graph 𝐺, 𝜕𝑅(𝐺) = 0 if and only if 𝑅(𝐺) ≅ 𝐹 where 𝐹 is 1-factor. 

Proof     

Let 𝐺 be a graph on n vertices with 𝜕𝑅(𝐺) = 0. 

Let 𝑅(𝐺) be the radial graph of 𝐺. 

Suppose 𝑅(𝐺) ≇ 𝐹 then there exists a vertex 𝑢 ∈ 𝑉(𝑅(𝐺))  such that deg(𝑢) ≥ 2 . 

This implies that 𝑢 has atleast two vertices at a distance 𝑟 in 𝐺. 

When 𝑋 = {𝑢}, |𝐵𝑅(𝑋)| − |𝑋| ≥ 1. Therefore, 𝜕𝑅(𝐺) = max {𝜕𝑅(𝑋) ∶ 𝑋 ⊆ 𝑉(𝐺)} ≥ 1  

which is contradiction.  Thus 𝑅(𝐺) ≅ 𝐹. 

Conversely,  suppose that 𝑅(𝐺) ≅ 𝐹. 

Claim: 𝜕𝑅(𝐺) = 0. 

Since 𝑅(𝐺) is 1-factor, then 𝑅(𝐺) = 𝐾2 ∪ 𝐾2 … … ∪ 𝐾2  (
𝑛

2
 𝑡𝑖𝑚𝑒𝑠). 

Now 𝜕𝑅(𝐺) = 𝜕(𝑅(𝐺)) 

                    = 𝜕(𝐾2 ∪ 𝐾2 … … ∪ 𝐾2) 

        =  𝜕(𝐾2) + 𝜕(𝐾2) + ⋯ + 𝜕(𝐾2)      

      (
𝑛

2
 𝑡𝑖𝑚𝑒𝑠) 

 =
𝑛

2
[𝜕(𝐾2)] 

 = 0 

That is, 𝜕𝑅(𝐺) = 0. Hence the proof.                □  

Theorem 2.16 

For any graph 𝐺 of order n , 𝜕𝑅(𝐺) = 𝑛 − 2 if and only if  𝐺 contains a full vertex. 

 

Proof   Let G be a graph of order n with ∆= 𝑛 − 1. 

Now,   ∆= 𝑛 − 1 ⇔ 𝑟𝑎𝑑(𝐺) = 1                                                                                                                 

                             ⇔ 𝜕𝑅(𝐺) = 𝜕(𝐺) 

                             ⇔ 𝜕𝑅(𝐺) = 𝑛 − 2  

Hence  ∆= 𝑛 − 1 ⇔ 𝜕𝑅(𝐺) = 𝑛 − 2.           □ 

 

We now construct some graphs with required Max-radial number. The following theorem 

constructs a graph 𝐺 with 𝜕𝑅(𝐺) = 𝑚 for any given natural number  𝑚.  

Theorem 2.17   
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For any given natural number 𝑚, there exists a graph 𝐺 such that 𝜕𝑅(𝐺) = 𝑚. 

Proof   

 Let 𝑚 be any given natural number. 

Case (i)  Suppose 𝑚 ≥ 1 is odd. 

Construct a graph 𝐺 with 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3;  𝑤1, 𝑤2, … 𝑤𝑘; 𝑢1, 𝑢2, … 

𝑢𝑚+1−𝑘}  where 1 ≤ 𝑘 ≤ 𝑚 + 1 and 𝐸(𝐺) = {𝑣1𝑤𝑖 , 𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑢𝑗  ∶  1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤

𝑚 + 1 − 𝑘} . Now we claim that 𝜕𝑅(𝐺) = 𝑚. Let 𝑆 = {𝑣2} ⊆ 𝑉(𝐺). Then 𝐵𝑅(𝑆) =
{𝑤1, 𝑤2, … . 𝑤𝑘 ;  𝑢1, 𝑢2, … . 𝑢𝑚+1−𝑘}. Therefore, the Max-Radial number of the set 𝑆 is 

𝜕𝑅(𝑆) = |𝐵𝑅(𝑆)| − |𝑆| = (𝑚 + 1) − 1 = 𝑚. Thus 𝜕𝑅(𝐺) ≥ 𝑚.  
It is enough if we prove 𝜕𝑅(𝐺) ≤ 𝑚. On contrary assume that 𝜕𝑅(𝐺) > 𝑚. Suppose there 

exists a Max-Radial set 𝑆 ⊆ 𝑉(𝐺) containing atleast two vertices. Then 𝐵𝑅(𝑆) must contain 

atleast 𝑚 + 3 vertices to have 𝜕𝑅(𝐺) > 𝑚 which is a contradiction to the fact that, the order 

of 𝐺 is 𝑚 + 4. Therefore, 𝑆 must be a singleton set. Also for any other singleton set 𝑆′ other 

than {𝑣2} we have 𝜕𝑅(𝐺) < 𝑚. Therefore, 𝑆 = {𝑣2} is the unique  Max-Radial  set of 𝐺. 

Hence 𝜕𝑅(𝐺) = 𝑚.  

Case (ii)  Suppose 𝑚 ≥ 2 is even. 

Construct a graph 𝐺 with 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4 ; 𝑤1, 𝑤2, … 𝑤𝑘; 𝑢1, 𝑢2, …  𝑢𝑚+2−𝑘} where 1 ≤

𝑘 ≤ 𝑚 + 2 and 𝐸(𝐺) = {𝑣1𝑤𝑖, 𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑢𝑗 ∶ 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑚 + 2 − 𝑘}. 

Now we claim that 𝜕𝑅(𝐺) = 𝑚. Let 𝑆 = {𝑣2, 𝑣3} ⊆ 𝑉(𝐺). Then 𝐵𝑅(𝑆) =
{𝑢1, 𝑢2, … . 𝑢𝑚+2−𝑘 ;  𝑤1, 𝑤2, … . 𝑤𝑘}. Therefore, the Max-Radial number of the set 𝑆 is 

𝜕𝑅(𝑆) = |𝐵𝑅(𝑆)| − |𝑆| = (𝑚 + 2) − 2 = 𝑚. Thus 𝜕𝑅(𝐺) ≥ 𝑚.  
Next we prove that 𝜕𝑅(𝐺) ≤ 𝑚. On contrary assume that 𝜕𝑅(𝐺) > 𝑚. Suppose a subset 𝑆 ⊆
𝑉(𝐺) contains more than two vertices. Then 𝐵𝑅(𝑆) must contain atleast 𝑚 + 4 vertices to 

have 𝜕𝑅(𝐺) > 𝑚, which is a contradiction, since 𝑉(𝐺) which is the union of 𝑆 and 𝐵𝑅(𝑆) has 

𝑚 + 5 vertices only. Therefore, 𝑆 must contain atmost two vertices. We can note that for any 

other set 𝑆′ containing atleast two vertices other than {𝑣2, 𝑣3}, 𝜕𝑅(𝐺) < 𝑚. In addition, no 

singleton set 𝑆′ has  𝐵𝑅(𝑆′ ) with more than 𝑚 vertices. Therefore, 𝜕𝑅(𝐺) = 𝑚.  □  

 

Theorem 2.18  

 For any two positive integers 𝑚 and 𝑛, 𝑛 ≥ 3 and 1 ≤ 𝑚 ≤ 𝑛 − 2, there exists a graph 𝐺 of 

order 𝑛 and max-radial number 𝑚. 

Proof   

Let 𝑚 and 𝑛 be two positive integers, 𝑛 ≥ 3 and 1 ≤ 𝑚 ≤ 𝑛 − 2. 

Case (i)  Suppose 𝑛 − 𝑚 is even. 

Construct a graph 𝐺 with 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, … . 𝑣
⌊

𝑛−𝑚

2
⌋
, 𝑣

⌊
𝑛−𝑚

2
⌋+1

, … . 𝑣𝑛−𝑚−1, 𝑣𝑛−𝑚, 

𝑤1, 𝑤2, …. 𝑤𝑚} and 𝐸(𝐺) = {𝑣𝑖𝑣𝑖+1 / 1 ≤ 𝑖 ≤ 𝑛 − 𝑚 − 1} ∪ {𝑣𝑛−𝑚−1𝑤𝑗 , 𝑤𝑗𝑣𝑛−𝑚 /  1 ≤ 𝑗 ≤

𝑚}. We claim that 𝜕𝑅(𝐺) = 𝑚.  Let 𝑆 = {𝑣
⌊

𝑛−𝑚

2
⌋
} ⊆ 𝑉(𝐺).Then  𝐵𝑅(𝑆) = {𝑤1, 𝑤2, … 𝑤𝑚,                       

 𝑣𝑛−𝑚}. Therefore, the Max-Radial number of the set 𝑆 is 𝜕𝑅(𝑆) = |𝐵𝑅(𝑆)| − |𝑆| =
(𝑚 + 1) − 1 = 𝑚. Thus 𝜕𝑅(𝐺) ≥ 𝑚.   Suppose a set 𝑆 contains at most two vertices. Then 

𝐵𝑅(𝑆) contains at most 𝑚 + 1 vertices. 𝜕𝑅(𝑆) = |𝐵𝑅(𝑆)| − |𝑆| < 𝑚. Thus 𝜕𝑅(𝐺) < 𝑚. 

Therefore, 𝑆 = {𝑣
⌊

𝑛−𝑚

2
⌋
} is only 𝜕𝑅 − 𝑠𝑒𝑡 of 𝐺 with 𝜕𝑅(𝑆) = 𝑚. Hence 𝜕𝑅(𝐺) = 𝑚. 

Case (ii)  Suppose 𝑛 − 𝑚 is odd. 

Construct a graph 𝐺 with 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, … . 𝑣𝑛−𝑚−1, 𝑤1, 𝑤2, … 𝑤𝑚, 𝑤} and 𝐸(𝐺) =
{𝑣𝑖𝑣𝑖+1, 𝑣𝑛−𝑚−1𝑤𝑗, 𝑤𝑣

⌊
𝑛−𝑚+1

2
⌋+1

, 𝑤𝑣
⌊

𝑛−𝑚+1

2
⌋−1

 /1 ≤ 𝑖 ≤ 𝑛 − 𝑚 − 2 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑚} . we 

prove that 𝜕𝑅(𝐺) = 𝑚. Let 𝑆 = {𝑣
⌊

𝑛−𝑚+1

2
⌋
} ⊆ 𝑉(𝐺).Then  𝐵𝑅(𝑆) = {𝑣1, 𝑤1, 𝑤2, 
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… 𝑤𝑚}, 𝜕𝑅(𝑆) = (𝑚 + 1) − 1 = 𝑚. Therefore, 𝜕𝑅(𝐺) ≥ 𝑚.  It is enough to prove that 

𝜕𝑅(𝐺) ≤ 𝑚.  Suppose 𝑆 contains atleast two vertices. Then 𝐵𝑅(𝑆) contains at most 𝑚 + 1 

vertices, 𝜕𝑅(𝐺) < 𝑚. Therefore, 𝑆 = {𝑣
⌊

𝑛−𝑚+1

2
⌋
} is only 𝜕𝑅 − 𝑠𝑒𝑡 of 𝐺 with 𝜕𝑅(𝑆) = 𝑚. 

Hence 𝜕𝑅(𝐺) = 𝑚.  This complete the proof.            

                

For example, 

(i) when 𝑛 = 9, 𝑚 = 5 in Theorem 2.18, the constructed graph is shown in Figure 2.1. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 

Here 𝜕𝑅(𝐺) = 5.    

 

(ii) when 𝑛 = 8, 𝑚 = 3 in Theorem 2.18, the constructed graph is shown in Figure 2.2. 

 

 

 

 

 

 

 

 

Figure 2.2 

Here 𝜕𝑅(𝐺) = 3.  

 

Theorem 2.19    

Given a graph 𝐻 and any integer 𝑚 > 0,  there exists a graph 𝐺 such that 𝐻 is an induced 

subgraph of 𝐺 and 𝜕𝑅(𝐺) − 𝜕𝑅(𝐻) = 𝑚. 

 

Proof    

Let 𝐻 be a given graph on 𝑛 vertices and 𝑚 be the positive integer. 

Suppose 𝑉(𝐻) = {𝑣1, 𝑣2, … . 𝑣𝑛}.  

Case (i)  𝐻 has a full vertex 𝑣. 

𝑣1 𝑣2 𝑣3 𝑣4 

𝑤1 

𝑤2 

𝑤3 

𝑤4 

𝑤5 

𝑣1 𝑣2 𝑣3 𝑣4 

𝑤1 

𝑤2 

𝑤3 

𝑤 
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Then ∆(𝐻) = 𝑛 − 1 and therefore, 𝜕𝑅(𝐻) = 𝑛 − 2. Construct a graph 𝐺 from the graph 𝐻 by 

attaching 𝑚 pendent vertices 𝑤1, 𝑤2, … . 𝑤𝑚 at 𝑣. Obviously 𝐻 is an induced subgraph of 𝐺. 

 

Take 𝑆 = {𝑣} ⊆ 𝑉(𝐺). Then 𝐵𝑅(𝑆) = {𝑣2, 𝑣3, … . 𝑣𝑛, 𝑤1, 𝑤2, … . 𝑤𝑚} = 𝑉(𝐺) − {𝑣}. Clearly 

𝑣 is a full vertex in 𝐺, we have the max-radial number of 𝐺 is 𝜕𝑅(𝐺) = (𝑚 + 𝑛) − 2. Now 

𝜕𝑅(𝐺) − 𝜕𝑅(𝐻) = ((𝑚 + 𝑛) − 2) − (𝑛 − 2) = 𝑚, implies that 𝜕𝑅(𝐺) − 𝜕𝑅(𝐻) = 𝑚. 

Case(ii) 𝐻 has no full vertex 𝑣 with radius 𝑟. 

Let 𝑆1 be a minimum 𝜕𝑅 − 𝑠𝑒𝑡 of 𝐻 and 𝜕𝑅(𝐻) = 𝑡. Then 𝐵𝑅(𝑆1) contains 𝑡 + 𝑠 vertices for 

some positive integer s. Let 𝑣 ∈ 𝐵𝑅(𝑆1). Then 𝑑(𝑢, 𝑣) = 𝑟 for some 𝑢 ∈ 𝑆1. Consider 𝑢 − 𝑣 

geodesic 𝑃: 𝑢𝑣1𝑣2 … . 𝑣. Construct a graph 𝐺 from 𝐻 by attaching 𝑚 new vertices 

𝑤1, 𝑤2, … . , 𝑤𝑚 & edges {𝑤𝑖𝑤 / 𝑤 ∈ 𝑁[𝑣], 1 ≤ 𝑖 ≤ 𝑚}. Clearly 𝐻 is an induced subgraph of 

𝐺. In addition, 𝑑(𝑢, 𝑤𝑖) = 𝑟 for all 𝑖, 1 ≤ 𝑖 ≤ 𝑚. Since all 𝑤𝑖’s are isomorphic images of 𝑣, 

𝑟𝑎𝑑(𝐺) = 𝑟𝑎𝑑(𝐻) = 𝑟. 𝑆1 serves to be a minimum 𝜕𝑅 − 𝑠𝑒𝑡 of 𝐺, also In 𝐺, 𝐵𝑅(𝑆1) also 

contains {𝑤𝑖 / 1 ≤ 𝑖 ≤ 𝑚} along with 𝐵𝑅(𝑆1) set of 𝐻. Hence |𝐵𝑅(𝑆1)| = 𝑠 + 𝑡 + 𝑚. 

𝜕𝑅(𝐺) = 𝑚 + 𝑡 making  𝜕𝑅(𝐺) − 𝜕𝑅(𝐻) = 𝑚.   

This complete the proof.                                    □

 

As an illustration for given 𝐻 and any integer 𝑚 > 0 in Theorem 2.19, the constructed graph 

𝐺 with 𝜕𝑅(𝐺) = 𝑚 + 𝑡, is shown in Figure 2.3 and 2.4.  

Case (i):  𝐻 has a full vertex 𝑣 and  𝑚 = 5.  

    

 

 

 

 

 

Figure 2.3 

Here 𝜕𝑅(𝐻) = 3 and 𝜕𝑅(𝐺) = 5.   

Case (ii)  𝐻 has no full vertex 𝑣 and radius 2.  Let  𝑚 = 3. 

 

Consider the geodesic 𝑃: 𝑣5𝑣4𝑣2 in Figure 2.4. 
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𝑣2 
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𝐺 : 

𝑤1 

𝑤3 𝑤4 

𝑤5 
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Figure 2.4 

 

Here 𝑆1 = {𝑣5} is a minimum 𝜕𝑅 − 𝑠𝑒𝑡 of  𝐻, 𝜕𝑅(𝐻) = 1 and 𝜕𝑅(𝐺) = 4.  

 

Note  The above constructed graph 𝐺 is not unique with this property. 

 

For example, 

As explained in Theorem 2.19, consider the geodesic 𝑃: 𝑣2𝑣1𝑣3 in Figure 2.5. 

 

 
Figure 2.5 

 

        Here 𝑆1 = {𝑣2} is a minimum 𝜕𝑅 − 𝑠𝑒𝑡 of  𝐻, 𝜕𝑅(𝐻) = 1 and 𝜕𝑅(𝐺1) = 4. 

Theorem 2.20  

For any given natural number 𝑚, there exists a graph 𝐺 such that  𝜕𝑅(𝐺) = |𝐶𝑒𝑛(𝐺)| = 𝑚. 

Proof  Let 𝑚 be any natural number.  

Construct a graph 𝐺 with 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑢1, 𝑢2, … , 𝑢𝑚} and 𝐸(𝐺) =
{𝑣𝑖𝑣𝑖+1, 𝑣2𝑢𝑗 , 𝑣3𝑢𝑗 , 𝑣4𝑢𝑗 , 𝑣4𝑢𝑚 /  

 1 ≤ 𝑖 ≤ 4 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑚 − 1}. We calim that  𝜕𝑅(𝐺) = |𝐶𝑒𝑛(𝐺)|. Since the radius of 𝐺 is 

2. Then 𝐶𝑒𝑛(𝐺) = {𝑣3, 𝑢1, 𝑢2, … , 𝑢𝑚−1} 

That is, |𝐶𝑒𝑛(𝐺)| = 𝑚.   ……(1) 

Let 𝑆 = {𝑢𝑚} ⊆ 𝑉(𝐺). Then 𝐵𝑅(𝑆) = {𝑣3, 𝑣5, 𝑢1, 𝑢2, … , 𝑢𝑚−1}. Therefore, the max-radial 

number of the set 𝑆 is 𝜕𝑅(𝑆) = |𝐵𝑅(𝑆)| − |𝑆| = 𝑚. Suppose any set 𝑆 contains atleast two 

vertices. Then  𝐵𝑅(𝑆) contains less than or equal to 𝑚 + 2 vertices. Therefore, 𝜕𝑅(𝑆) =
|𝐵𝑅(𝑆)| − |𝑆| ≤ 𝑚. Thus  𝜕𝑅(𝐺) = 𝑚. ……(2) 

From (1) and (2), 𝜕𝑅(𝐺) = |𝐶𝑒𝑛(𝐺)| = 𝑚.  

This complete the proof.            □ 

For example,  
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when 𝑚 = 3 in Theorem 2.20, the constructed graph 𝐺 is shown in Figure 2.6. 

 

 

 

 

 

 

 

 

 

Figure 2.6 

 

Here 𝑆 = {𝑣2} is a minimum 𝜕𝑅 − 𝑠𝑒𝑡 of  𝐺, 𝜕𝑅(𝐺) = 3 and |𝐶𝑒𝑛(𝐺)| = 3. 

 

Theorem 2.21 

For any positive integer 𝑚, there exists a graph 𝐺 such that 𝜕𝑅(𝐺) = 𝜒(𝐺) = 𝑚. 

Proof 

 Let 𝑚 be any positive integer. Construct a graph 𝐺 with 𝑉(𝐺) =
{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑢1, 𝑢2, …, 
𝑢𝑚−2} and 𝐸(𝐺) = {𝑣1𝑣2, 𝑣1𝑣3, 𝑣1𝑣4, 𝑢𝑖𝑢𝑗 , 

𝑣1𝑢𝑖 , 𝑣2𝑢𝑖  /   1 ≤ 𝑖, 𝑗 ≤ 𝑚 − 2}. We claim that  𝜕𝑅(𝐺) = 𝜒(𝐺) = 𝑚. Let 𝑣1 be a full vertex 

of 𝐺. Then quote by Fact Theorem 2.16, 𝜕𝑅(𝐺) = (𝑚 + 2) − 2 = 𝑚.               

..……(1) 

Suppose {𝑥1, 𝑥2, … , 𝑥𝑚} is the set of colours. Then  {𝑣1}, {𝑣2, 𝑣3, 𝑣4}, {𝑢1}, {𝑢2}, … , {𝑢𝑚−2} 

are the colour classes induced by 𝑥1, 𝑥2, … , 𝑥𝑚 respectively. Therefore, 𝑚-colouring of 𝐺 

exists. Hence the Chromatic number 𝜒(𝐺) = 𝑚.               

                     ………(2) 

From (1) and (2), 𝜕𝑅(𝐺) = 𝜒(𝐺).                      □ 

For example,  

when 𝑚 = 4 in Theorem 2.21, the constructed graph 𝐺 is shown in Figure 2.7. 

 

 

 

 

 

Figure 2.7 

Here 𝑆 = {𝑣1} is a minimum 𝜕𝑅 − 𝑠𝑒𝑡 of  𝐺, 𝜕𝑅(𝐺) = 4 and 𝜒(𝐺) = 4 . 
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