
International Journal of Aquatic Science  

ISSN: 2008-8019 

Vol  12, Issue  03, 2021 

 

9 

 

On Non-Associative Algebra And Its 

Properties 
 

Nosirov Sobir Nosirovich1, Aroev Dilshod Davronovich2, 

Sobirov Avazbek Abdurashid ugli3 

 

1Kokand State Pedagogical Institute candidate of physical and mathematical sciences, Senior 

Lecturer 
2Kokand State Pedagogical Institute PhD, Senior Lecturer 

3Kokand State Pedagogical Institute Student, Methods of Teaching Mathematics 

 

E-mail: 1nosirov47@bk.ru, 2dilshod_aroyev@mail.ru 

, 3avazbeksobirovqdpi@gmail.com 
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1. INTRODUCTION. 

 

 Let {1,2,3,..., }M n=  be a set and :F M M→  a reflection of a mutual value. The 

addition between the elements 1 2( , ,..., ) ( )nx x x x t=  and 1 2( , ,..., ) ( )ny y y y t=  of the n -

dimensional nR  arithmetic space forms a linear space with respect to the multiplication 

operations 1 2( )( ) ( , ,..., )nx t x x x   = for the numbers 

1 1 2 2( )( ) ( , ,..., )n nx y t x y x y x y+ = + + +  

and R . 

If we determine the multiplication of the elements ( )x t  and ( )y t  in the space nR  by the 

coordinates, i.e. 1 1 2 2( )( ) ( , ,..., )n nx y t x y x y x y = , then the set nR is an algebra whose 

color (size) is n  over the real number field R , that is, the set nR satisfies the conditions of 

linear space (8 conditions) and ring (6 conditions). These conditions are as follows [1-9]: 

1) + action is associative, 

2) + action is commutative, 

3) there is a neutral element to the + action, 

4) there is an opposite element for each element in nR  relative to the + operation, 

5) For , ( ) , ( )n nR x t R y t R    elements the ( )( ) ( ) ( )x y t x t y t  + = +  

equation is fulfilled. 

6) 1 R   numbers and ( ) nx t R  element for  ( ) ( ) ( ) ( )x t x t y t   + = + . 

7) , R   numbers and ( ) nx t R element for ( ) ( ) ( ) ( ) ( ( ))x t x H x t      =  =  . 
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8) (1 )( ) ( )x t x t = . 

Theoritical background 

The above 8 conditions are linear space conditions, the first 4 of which are repeated in the 

ring conditions, and 2 more of the following conditions are studied. 

1) The practice of multiplication is associative, i.e.  

(( ) )( ) ( ( )( )) ( ) ( ) ( )x y z t x y z t x t y t z t  =   =   . 

2) , , nx y z R  for elements (( ) )( ) ( )( )x y z t x z yz t+ =  + =  

( ) ( ) ( ) ( )x t z t y t z t= + ; 

( ( ))( ) ( )( ) ( ) ( ) ( ) ( )x y z t x y xz t x t y t x t z t+ =  + = +  equations are 

reasonable. 

Furthermore, the product of the two elements in nR  is commutative, and the 

( ) (1,1,...,1)e t =  element is a unit element relative to the multiplication operation [2]. 

Hence, the set nR  forms a commutative loop with a unit element relative to the specified 

operations. 

If K is a circle and its part set satisfies conditions  

а) ,x y J x y J  +   

b) ,x J z K x z J      

for J K , then the set J  is called the ideal of the K  circle. The ideals in the K -circle 

allow us to determine the structure of this circle. The more ideals in the circle, the more 

complex the circle. 

 

Main part 

Determining all the ideals in the nR circle is not complicated. For example, the set of all 

elements of the form 3 4(0,0, , ,..., )na a a with the first two coordinates equal to 0 would be 

the ideal of the nR  circle. Other ideals of this circle will also consist of elements whose 

assigned coordinates are 0s. 

If one ideal of a circle is not part of another ideal, it is called a maximum ideal. All maximum 

ideals of the nR  circle will consist of elements with exactly one coordinate 0. However, any 

ideal of the nR  circle consists of some maximal ideals intersection. 

Thus it is possible to determine the construction of all the ideals of the nR  circle. 

 

The result. 

If we leave the + operation in the set nR  unchanged and determines the multiplication 

operation in it by reflecting :F M M→ with the following equation, 

1 1 2 2
( )( ) ( , ,..., )

n nF F F F F Fx y t x y x y x y+ =     in which case this action does not satisfy the 

associative condition, i.e., it forms an nR -non-associative circle. In this case, the ideals of the 

nR  circle are in a different view. If the reflection :F M M→  is of a single value rather 

than a reciprocal value, the ideals of the nR  circle become more complex. 

We give examples to make the non-associative multiplication operation introduced using F  

reflection understandable. Let the set {1,2,3,4,5}M =  and 5R  consist of elements of the 
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form 1 2 3 4 5( ) { , , , , }x t x x x x x= . Let :F M M→ be determined by the 

reflection
1 2 3 4 5

2 1 4 5 3
F

 
=  
 

. 

We show that the *-production of 5, ,x y z R  elements does not satisfy the associative 

condition. 

1 1 2 2 3 3 4 4 5 5( * ) ( , , , , )*F F F F F F F F F Fx y z x y x y x y x y x y Z =      =  

2 2 1 1 4 4 5 5 3 3 1 2 3 4 5( , , , , ) *( , , , , )x y x y x y x y x y z z z z z= =  

1 1 2 2 2 1 5 5 4 3 3 5 4 4 3( , , , , )x y z x y z x y z x y z x y z=       

1 1 2 2 3 3 4 4 5 5
*( * ) *( , , , , )F F F F F F F F F Fx y z x y z y z y z y z y z= =  

2 2 1 1 4 4 5 5 3 3*( , , , , )x y z y z y z y z y z= =  

2 1 1 1 2 2 4 5 5 5 3 3 3 4 4( , , , , )x y z x y z x y z x y z x y z= . 

So, *( * ) ( * )*x y z x y z   

Let F denote the non-associative circle nR defined by the reflection in the form ( )nR F . 

The fact that the writing of the ( )nR F  circle ideals is fully defined when the reflection F  is 

mutually exclusive can be expressed as the product of the reflections F  in the reflection 

case, the ( )nR F  circle ideals depend on the number of cycles. 

For example, If {1,2,3,4,...,10}M = , :F M M→ is given by the equation  

1 2 3 4 5 6 7 8 9 10

2 1 3 8 6 4 5 7 10 9
F

 
=  
 

, 

 then F  is equal to the product of 4 cycles, i.e. (1,2)(3)(48756)(910)F = , where the 

lengths of the first and last cycles are 2, the length of the second cycle is 1, and the length of 

the third cycle is 5. 

All sets of ( ) ( )nx t R F functions that take a value of 0 in one or more cycles would be the 

ideal of the ( )nR F  loop. For example, if the reflection in the (1,2)(3)(48756)(910)F =  

view the sets of 

 1 3 4 100,0, , ,..., ) 3,10iJ a a a a R i=  = ;  2 4 5 100,0,0, , ,..., ) 4,10iJ a a a a R i=  =  

and so on would be the ideal of the ( )nR F  circle.  

They can be written for each cycle or multiplication of cycles. In this example, there are 4 

ideals of the ( )nR F  circle, 4 of which are maximal ideals. By adding to these ideals the 

inherent ideals of the form 0 {(0,0,...,0)}J = and ( )n nJ R F= , we find all the ideals of the 

( )nR F circle when 10n = and (12) (3) (4 8 7 5 6)(9 10)F =  are present. 

 

2. CONCLUSION. 

 

Below we determine that all the ideals of the ( )nR F circle are written when F a one-valued 

reciprocal reflection is. 



International Journal of Aquatic Science  

ISSN: 2008-8019 

Vol  12, Issue  03, 2021 

 

12 

 

Theorem 1. All elements set in the ( )nR F  circle that are equal to 0 in at least one cycle 

constitutes the ideal of this circle, and conversely, any ideal of the ( )nR F circle consists of 

elements that assume a value of 0 in one or more cycles. 

Proof. The first part of the theorem is proved to be simple, i.e., for a set of elements J  that 

takes a value of 0 in one or more cycles: 

1) ,x y J  is x y J+   

2) , ( )nx J z R F   is *x z J  the relationship is directly proven to be reasonable. 

Suppose that in proving the second part of the theorem, 
1 1 2( ,..., )...( , ,..., )k pF i i s s s=  

consists of the cycles product. Let ( )nJ R F be an arbitrary ideal of the circle. Suppose 

{(0,...,)}J   and ( )nJ R F . 

If we can show that in the specific ideal J  lie ( )nR F  all the elements of the 

set 1 (1,0,...,0)l = , 2 (0,1,0,...,0)l = , ..., 2 (0,...,0,1)l = in appearance (i.e. the arithmetic 

basis) lie, then the equation ( )nJ R F= is obtained. To prove the theorem, we assume the 

inverse, i.e., that {(0,...,0)}J  ( )nJ R F  and J  ideally have an element that takes a 

value different from 0 at least one point of each cycle. 

Suppose that the element whose first coordinate of the first cycle of reflection F  is different 

from 0 belongs to 1 2( , ,..., )na a a a= J , let 1 0a  . Without limiting the generality, 

1 1a  can be obtained. To simplify the notation, we call F  the first cycle of reflection (1,2, 

..., k ). In this case, the ideal J contains an element of the form 2 5(1, ,..., ,..., )na a a a= , and 

the element formed by multiplying it by the element 1 (1,0,...,0)l = belongs to the 

ideal 1 (0,1,0,...,0)a l− = .  

After multiplying this element by itself exactly k times, it is equal to 1 at only one point of 

the first cycle and 0 at other cycle points It follows that the elements in figure 

1 (1,0,...,0,0,...,0)l = ; 2 (0,1,0,...,0,0,...,0)l =  

3 (0,0,1,0,...,0,0,...,0)l = ; (0,...,0,1,0,0,...,0)kl =  

belong to the ideal J . 

If the same process performed with the first loop is performed for other cycles of 

reflection F , we obtain that the ideal J corresponds to all the elements of the ( )nR F  circle 

called the arithmetic basis. This contradicts the hypothesis because the ( )nJ R F  condition 

existed. 

Hence, all ideals of the ( )nR F circle consist of elements equal to 0 in one or more cycles of 

reflection F . Within these ideals, however, a set of elements equal to 0 at all points in a 

single cycle will be the maximum ideals. 

Any ideal of ( )nR F circle is in a product (intersection) form of some of its maximum ideals. 

For a finite set M and a reciprocal of :F M M→ and :G M M→ reciprocal values, if 

there is a reciprocal reflection :H M M→ satisfying the equation GHHF 1−= , then the 

reflections F and G  are said to be similar. 
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For example, reflections 
1 2 3 4 5 6 7

2 3 1 4 6 7 5

 
 
 

 and 
1 2 3 4 5 6 7

1 3 4 2 7 5 6

 
 
 

 are 

similar because (123)(4)(56 7)F =  has 3 cycles in reflection, they are the lengths of the 

first and third equal to 3 and the lengths of the second equal to 1, as well as, 

(1)(234)(567)G =  reflection , there are 2 cycles with 3 length and 1 with 1 length. 

In this case, the corresponding satisfactory H reflection 
1F H GH−= can be constructed as 

follows 

1 2 3 4 5 6 7

4 1 2 3 5 7 6
H

 
=  
 

 

Then  

1
1 2 3 4 5 6 7

2 3 4 1 5 7 6
H −  

=  
 

 

1F H GH−=  where 
1F H GH−=  is the equation. 

It should be noted here that the H reflection that satisfies the 
1F H GH−= equation can be 

constructed in several ways. To do this, it is necessary to find cycles of the same length in the 

reflection F and G , construct mutually equal reflections between the elements included in 

this cycle, and combine these reflections. 

 

Theorem 2. For the ( )nR F  and ( )nR G  non-associative circles constructed with F and G  

reflections to be isomorphic, the F and G  reflections must be similar and sufficient [2]. 

Let {1,2,3,..., }, 1M n n=   be a value reflection of set :F M M→ . 

The points i ( 1, )si s k= that satisfy the equations 1 2( ) ( ) ... ( )kF i F i F i= = =  in the set 

M are called adjacent points. If F  is not mutually exclusive, then of course there will be 

adjacent points. Similarly, there are 
1 2, ,..., pt t t  points that satisfy the 

1 2 1( ) ( ) ... ( )pF t F t F t t= = = = equations, which are called F reflection cycles. The 

number of F reflection cycles can also be more than one. 

 They are called F  reflection cycles. The number of F  reflection cycles can also be 

more than one. 

For example,  

1 2 3 4 5 6 7 8 9 10

2 3 4 2 5 7 8 9 10 10
А

 
=  
 

; (1) (4) 2F F= = ; (9) (10) 10F F= =  

equations are fulfilled, then points 1 and 4 and 9, 10 will be adjacent points. (2 3 4) and 10 

points form loops. 

 

Theorem 3. All elements set that assume 0 value in reflection cycle F in the ( )nR F circle is 

the maximum ideal of the ( )nR F circle. 

Proof. Let F  be a reflection cycle 1 2, ,..., ki i i  points, that is, let the 

1 2 1( ) ( ) ... ( )kF i F i F i i= = = =  equations be satisfied. Let J  denote the set of all elements 
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that assume 0 value at these points. The product of 2 arbitrary Z elements in X and R of 2 

elements belonging to J   

( * )( ) ( ( )) ( ( ))x z t x F t Z F t=  

again belongs to J , because F reflects the cycle elements again to the cycle elements, and 

( ( ))x F t assumes a 0 value when the function t  belongs to the cycle. Hence, the function 

( * )( )x z t  is equal to 0 when t  belongs to the cycle. Thus, the set J  becomes the ideal of 

the circle ( )nR F .  

 We now show that this ideal is the maximum ideal, i.e., that the ideal J does not lie 

within the ideal other than the R circle. To do this, we assume the opposite, that is, that such 

an ideal 1 ( )nJ R F  exists and those conditions 1J J and 1J J  are satisfied. Under 

this condition, the function 1( )f t J , which takes a value greater than 0 at least one point of 

the 1 2, ,..., ki i i cycle, belongs to the ideal. Let the function ( )f t be equal to 1 at point 1i  of 

the cycle without limiting the generality. 

If we multiply this function by the operation * in the ( )nR F circle to the function that takes 0 

from all other points at point 1i in the circle ( )nR F , we show that at point 1ki − of the cycle 

the function 1 and at all other points of M 0 also belong to the ideal 1J . And so on, if we 

repeat this process 2k = times, it follows that the ideal 1J  corresponds to k elements of the 

arithmetic base, which is equal to 1 at 1 point of the 1 2, ,..., ki i i cycle and 0 at other points. It 

follows from the condition 1J J that the elements 1J which at the 1 2, ,..., ki i i cycle points 

of the set M take a value of 0 and at each other point (they are n k− ) 1 belong to the ideal. 

Thus, we have created that the  

1 2(1,0,...,0), (0,1,0,...,0),...,l l= =  (0,...,0,1)nl =  

vectors, consisting of the arithmetic basis of the ( )nR F circle, correspond to the 1J  ideal. 

This indicates that 1 ( )nJ R F=  is, i.e., J  is the maximum of the ideal.  

Taking any point 1S  of the set M , the sequence of points 
2

1 1 1( ), ( ( )) ( ),...F S F F S F S=  

is followed by the equation 1 1( ) ( )p qF S F S=  after one p  steps, here q p . If point 1S  

belongs to any cycle in M , then a sequence of points belonging to the cycle follows. 

If point 1S  does not belong to any cycle, then 
2 1

1 1 1 1, ( ), ( ),..., ( )pS F S F S F S−
 iterative 

sequence is formed. 

It can be proved that for any point t obtained from M , the set of all elements assuming a 

value of 0 at all points belonging to the iterative sequence , ( ),..., ( )pt F t F t is the 

( )nR F circle ideal. This ideal is part of the maximum ideal generated by the cycle that 

belongs to this iterative sequence. We call the ideals created by this method the type I ideal 

of the ( )nR F  circle. 

For example, if a reflection of the form  

1 2 3 4 5 6 7 8 9

2 3 4 2 5 7 8 9 9
F

 
=  
 

 

is given 
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2 3 41, (1) 2, (1) 3, (1) 4, (1) 2F F F F= = = =  

equations are satisfied, elements 1,2,3,4 are an iterative sequence to which the cycle (2,3,4) 

belongs. The {1,2,3,4,5,6,7,8,9}M =  set consists of 5 element loops, as well as 9 

element loops. Elements 6,7,8,9, as well as elements 7,8,9 and 8,9 are iterative sequences. 

 

Theorem 4. If reflection :F M M→  is given and points 1 2, ,..., si i i  are adjacent points 

relative to reflection F , then the elements of the ( )nR F  circle that satisfy the condition 

1 2 51 2 5... 0i i ia t a t a t+ + + =  for any real number satisfying the condition 

1 2 5... 0a a a+ + + =  (at least one 0ia = ) constitute its ideal. 

Proof. To simplify the notation, suppose that points 1,2,3 are adjacent points to reflect F . 

Let the equation 1 2 3, , 0a a a = be satisfied for 1 2 3, ,a a a numbers, one of which is different 

from 0. We show that a set of 1 2 3( ) ( , , ,..., )nx t t t t t= elements satisfying condition 

1 1 2 2 3 3 0a t a t a t+ + = makes J  ideal. We take another 1 2 3( ) ( , , ,..., )ny t u u u u= element 

belonging to J , add them, and make  

1 1 2 2 3 3( )( ) ( , , ,..., )n nx y t t u t u t u t u+ = + + + +  

for the 1 1 1 2 2 2 3 3 3( ) ( ) ( ) 0a t n a t u a t u+ + + + + =  element, because the ,x y J relation is 

reasonable. Since points 1,2,3 are adjacent points, the (1) (2) (3)F F F= =  equations are 

satisfied. The product of x J and ( )nf R F  elements assumes the same value at points 

( * )( )x t t 1,2,3, i.e. ( *1)(1) ( * )(2) ( * )(3);x x f x t= =   

because 

( (1)) ( (1)) ( (2)) ( (2)) ( (3)) ( (3));x F f F x F f F x F f F =  =   

equations are satisfied. If we set this value to b , based on equality 

 

( * )(1) ( * )(2) ( * )(3)x f x f x f b= = =  

we create an equation 

1 2 3 1 2 3( ) 0a b a b a b b a a a+ + = + + =  

Therefore, a ( * )( )x f t J relationship is appropriate, i.e. the J  set is ideal. 

We call the ideals of the ( )nR F  circle determined by theorem 4 the type II ideal. 
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