On Non-Associative Algebra And Its Properties

Nosirov Sobir Nosirovich ${ }^{1}$, Aroev Dilshod Davronovich ${ }^{2}$, Sobirov Avazbek Abdurashid ugli ${ }^{3}$
${ }^{1}$ Kokand State Pedagogical Institute candidate of physical and mathematical sciences, Senior Lecturer
${ }^{2}$ Kokand State Pedagogical Institute PhD, Senior Lecturer
${ }^{3}$ Kokand State Pedagogical Institute Student, Methods of Teaching Mathematics
E-mail: ${ }^{1}$ nosirov47@bk.ru, ${ }^{2}$ dilshod_aroyev@mail.ru
, 3avazbeksobirovqdpi@gmail.com

Abstract

In this article, we construct a class of non-associative algebras and study their properties. On this case, research has been analyzed both methodological and theoretical aspects of the of non-associative algebras with the properties of the research database. Hence, author makes conclusions with recommendations for the further development prosperity and investigations on non-associative algebras and study their properties

Key words: mapping, isomorphic mapping, permutation, cycle, cycle length

1. INTRODUCTION.

Let $M=\{1,2,3, \ldots, n\}$ be a set and $F: M \rightarrow M$ a reflection of a mutual value. The addition between the elements $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x(t)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)=y(t)$ of the n dimensional R_{n} arithmetic space forms a linear space with respect to the multiplication operations $(\lambda x)(t)=\left(\lambda x_{1}, \lambda x_{2}, \ldots, \lambda x_{n}\right)$ for the numbers

$$
(x+y)(t)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)
$$

and $\lambda \in R$.
If we determine the multiplication of the elements $x(t)$ and $y(t)$ in the space R_{n} by the coordinates, i.e. $(x \cdot y)(t)=\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right)$, then the set R_{n} is an algebra whose color (size) is n over the real number field R, that is, the set R_{n} satisfies the conditions of linear space (8 conditions) and ring (6 conditions). These conditions are as follows [1-9]:

1) + action is associative,
2) + action is commutative,
3) there is a neutral element to the + action,
4) there is an opposite element for each element in R_{n} relative to the + operation,
5) For $\lambda \in R, \quad x(t) \in R_{n}, \quad y(t) \in R_{n} \quad$ elements the $\lambda(x+y)(t)=\lambda x(t)+\lambda y(t)$ equation is fulfilled.
6) $\lambda_{1} \mu \in R$ numbers and $x(t) \in R_{n}$ element for $(\lambda+\mu) x(t)=\lambda x(t)+\mu y(t)$.
7) $\lambda, \mu \in R$ numbers and $x(t) \in R_{n}$ element for $(\lambda \cdot \mu) x(t)=\lambda \cdot(\mu) x(H)=\mu(\lambda \cdot x(t))$.

Vol 12, Issue 03, 2021
8) $(1 \cdot x)(t)=x(t)$.

Theoritical background

The above 8 conditions are linear space conditions, the first 4 of which are repeated in the ring conditions, and 2 more of the following conditions are studied.

1) The practice of multiplication is associative, i.e.

$$
((x \cdot y) \cdot z)(t)=(x \cdot(y \cdot z)(t))=x(t) \cdot y(t) \cdot z(t)
$$

2) $\quad x, y, z \in R_{n} \quad$ for elements $\quad((x+y) z)(t)=(x \cdot z+y z)(t)=$ $=x(t) z(t)+y(t) z(t)$;
$(x(y+z))(t)=(x \cdot y+x z)(t)=x(t) y(t)+x(t) z(t) \quad$ equations are reasonable.
Furthermore, the product of the two elements in R_{n} is commutative, and the $e(t)=(1,1, \ldots, 1)$ element is a unit element relative to the multiplication operation [2].
Hence, the set R_{n} forms a commutative loop with a unit element relative to the specified operations.
If K is a circle and its part set satisfies conditions
a) $x, y \in J \Rightarrow x+y \in J$
b) $x \in J, z \in K \Rightarrow x \cdot z \in J$
for $J \subset K$, then the set J is called the ideal of the K circle. The ideals in the K-circle allow us to determine the structure of this circle. The more ideals in the circle, the more complex the circle.

Main part

Determining all the ideals in the R_{n} circle is not complicated. For example, the set of all elements of the form $\left(0,0, a_{3}, a_{4}, \ldots, a_{n}\right)$ with the first two coordinates equal to 0 would be the ideal of the R_{n} circle. Other ideals of this circle will also consist of elements whose assigned coordinates are 0s.
If one ideal of a circle is not part of another ideal, it is called a maximum ideal. All maximum ideals of the R_{n} circle will consist of elements with exactly one coordinate 0 . However, any ideal of the R_{n} circle consists of some maximal ideals intersection.
Thus it is possible to determine the construction of all the ideals of the R_{n} circle.

The result.

If we leave the + operation in the set R_{n} unchanged and determines the multiplication operation in it by reflecting $F: M \rightarrow M$ with the following equation, $(x+y)(t)=\left(x_{F_{1}} \cdot y_{F_{1}}, x_{F_{2}} \cdot y_{F_{2}}, \ldots, x_{F_{n}} \cdot y_{F_{n}}\right)$ in which case this action does not satisfy the associative condition, i.e., it forms an R_{n}-non-associative circle. In this case, the ideals of the R_{n} circle are in a different view. If the reflection $F: M \rightarrow M$ is of a single value rather than a reciprocal value, the ideals of the R_{n} circle become more complex.
We give examples to make the non-associative multiplication operation introduced using F reflection understandable. Let the set $M=\{1,2,3,4,5\}$ and R_{5} consist of elements of the

Vol 12, Issue 03, 2021
form $x(t)=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} . \quad$ Let $F: M \rightarrow M$ be determined by the reflection $F=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3\end{array}\right)$.
We show that the ${ }^{*}$-production of $x, y, z \in R_{5}$ elements does not satisfy the associative condition.
$\left(x^{*} y\right) \times z=\left(x_{F 1} \cdot y_{F 1}, x_{F 2} \cdot y_{F 2}, x_{F 3} \cdot y_{F 3}, x_{F 4} \cdot y_{F 4}, x_{F 5} \cdot y_{F 5}\right) * Z=$
$=\left(x_{2} y_{2}, x_{1} y_{1}, x_{4} y_{4}, x_{5} y_{5}, x_{3} y_{3}\right) *\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)=$
$=\left(x_{1} y_{1} \cdot z_{2}, x_{2} y_{2} \cdot z_{1}, x_{5} y_{5} \cdot z_{4}, x_{3} y_{3} \cdot z_{5}, x_{4} y_{4} \cdot z_{3}\right)$
$x *(y * z)=x *\left(y_{F_{1}} z_{F_{1}}, y_{F_{2}} z_{F_{2}}, y_{F_{3}} z_{F_{3}}, y_{F_{4}} z_{F_{4}}, y_{F_{5}} z_{F_{5}}\right)=$
$=x *\left(y_{2} z_{2}, y_{1} z_{1}, y_{4} z_{4}, y_{5} z_{5}, y_{3} z_{3}\right)=$
$=\left(x_{2} y_{1} z_{1}, x_{1} y_{2} z_{2}, x_{4} y_{5} z_{5}, x_{5} y_{3} z_{3}, x_{3} y_{4} z_{4}\right)$.
So, $x^{*}\left(y^{*} z\right) \neq\left(x^{*} y\right) * z$
Let F denote the non-associative circle R_{n} defined by the reflection in the form $R_{n}(F)$.
The fact that the writing of the $R_{n}(F)$ circle ideals is fully defined when the reflection F is mutually exclusive can be expressed as the product of the reflections F in the reflection case, the $R_{n}(F)$ circle ideals depend on the number of cycles.
For example, If $M=\{1,2,3,4, \ldots, 10\}, F: M \rightarrow M$ is given by the equation
$F=\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 1 & 3 & 8 & 6 & 4 & 5 & 7 & 10 & 9\end{array}\right)$,
then F is equal to the product of 4 cycles, i.e. $F=(1,2)(3)(48756)(910)$, where the lengths of the first and last cycles are 2 , the length of the second cycle is 1 , and the length of the third cycle is 5 .
All sets of $x(t) \in R_{n}(F)$ functions that take a value of 0 in one or more cycles would be the ideal of the $R_{n}(F)$ loop. For example, if the reflection in the $F=(1,2)(3)(48756)(910)$ view the sets of

$$
\left.\left.J_{1}=\left\{0,0, a_{3}, a_{4}, \ldots, a_{10}\right) \mid a_{i} \in R i=\overline{3,10}\right\} ; J_{2}=\left\{0,0,0, a_{4}, a_{5}, \ldots, a_{10}\right) \mid a_{i} \in R i=4,10\right\}
$$

and so on would be the ideal of the $R_{n}(F)$ circle.
They can be written for each cycle or multiplication of cycles. In this example, there are 4 ideals of the $R_{n}(F)$ circle, 4 of which are maximal ideals. By adding to these ideals the inherent ideals of the form $J_{0}=\{(0,0, \ldots, 0)\}$ and $J_{n}=R_{n}(F)$, we find all the ideals of the $R_{n}(F)$ circle when $n=10$ and $F=(12)(3)(48756)(910)$ are present.

2. CONCLUSION.

Below we determine that all the ideals of the $R_{n}(F)$ circle are written when F a one-valued reciprocal reflection is.

Theorem 1. All elements set in the $R_{n}(F)$ circle that are equal to 0 in at least one cycle constitutes the ideal of this circle, and conversely, any ideal of the $R_{n}(F)$ circle consists of elements that assume a value of 0 in one or more cycles.
Proof. The first part of the theorem is proved to be simple, i.e., for a set of elements J that takes a value of 0 in one or more cycles:

1) $x, y \in J$ is $x+y \in J$
2) $x \in J, z \in R_{n}(F)$ is $x^{*} z \in J$ the relationship is directly proven to be reasonable.

Suppose that in proving the second part of the theorem, $F=\left(i_{1}, \ldots, i_{k}\right) \ldots\left(s_{1}, s_{2}, \ldots, s_{p}\right)$ consists of the cycles product. Let $J \subset R_{n}(F)$ be an arbitrary ideal of the circle. Suppose $J \neq\{(0, \ldots)$,$\} and J \neq R_{n}(F)$.
If we can show that in the specific ideal J lie $R_{n}(F)$ all the elements of the set $l_{1}=(1,0, \ldots, 0), l_{2}=(0,1,0, \ldots, 0), \ldots, l_{2}=(0, \ldots, 0,1)$ in appearance (i.e. the arithmetic basis) lie, then the equation $J=R_{n}(F)$ is obtained. To prove the theorem, we assume the inverse, i.e., that $J \neq\{(0, \ldots, 0)\} J \neq R_{n}(F)$ and J ideally have an element that takes a value different from 0 at least one point of each cycle.
Suppose that the element whose first coordinate of the first cycle of reflection F is different from 0 belongs to $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) J$, let $a_{1} \neq 0$. Without limiting the generality, $a_{1} \neq 1$ can be obtained. To simplify the notation, we call F the first cycle of reflection (1,2, $\ldots, k)$. In this case, the ideal J contains an element of the form $a=\left(1, a_{2}, \ldots, a_{5}, \ldots, a_{n}\right)$, and the element formed by multiplying it by the element $l_{1}=(1,0, \ldots, 0)$ belongs to the ideal $a-l_{1}=(0,1,0, \ldots, 0)$.
After multiplying this element by itself exactly k times, it is equal to 1 at only one point of the first cycle and 0 at other cycle points It follows that the elements in figure
$l_{1}=(1,0, \ldots, 0,0, \ldots, 0) ; l_{2}=(0,1,0, \ldots, 0,0, \ldots, 0)$
$l_{3}=(0,0,1,0, \ldots, 0,0, \ldots, 0) ; l_{k}=(0, \ldots, 0,1,0,0, \ldots, 0)$
belong to the ideal J.
If the same process performed with the first loop is performed for other cycles of reflection F, we obtain that the ideal J corresponds to all the elements of the $R_{n}(F)$ circle called the arithmetic basis. This contradicts the hypothesis because the $J \neq R_{n}(F)$ condition existed.
Hence, all ideals of the $R_{n}(F)$ circle consist of elements equal to 0 in one or more cycles of reflection F. Within these ideals, however, a set of elements equal to 0 at all points in a single cycle will be the maximum ideals.
Any ideal of $R_{n}(F)$ circle is in a product (intersection) form of some of its maximum ideals.
For a finite set M and a reciprocal of $F: M \rightarrow M$ and $G: M \rightarrow M$ reciprocal values, if there is a reciprocal reflection $H: M \rightarrow M$ satisfying the equation $F=H^{-1} G H$, then the reflections F and G are said to be similar.

Vol 12, Issue 03, 2021
For example, reflections $\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 4 & 6 & 7 & 5\end{array}\right)$ and $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 4 & 2 & 7 & 5 & 6\end{array}\right)$ are similar because $F=(123)(4)(567)$ has 3 cycles in reflection, they are the lengths of the first and third equal to 3 and the lengths of the second equal to 1 , as well as, $G=(1)(234)(567)$ reflection, there are 2 cycles with 3 length and 1 with 1 length.
In this case, the corresponding satisfactory H reflection $F=H^{-1} G H$ can be constructed as follows

$$
H=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 1 & 2 & 3 & 5 & 7 & 6
\end{array}\right)
$$

Then
$H^{-1}=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 5 & 7 & 6\end{array}\right)$
$F=H^{-1} G H$ where $F=H^{-1} G H$ is the equation.
It should be noted here that the H reflection that satisfies the $F=H^{-1} G H$ equation can be constructed in several ways. To do this, it is necessary to find cycles of the same length in the reflection F and G, construct mutually equal reflections between the elements included in this cycle, and combine these reflections.

Theorem 2. For the $R_{n}(F)$ and $R_{n}(G)$ non-associative circles constructed with F and G reflections to be isomorphic, the F and G reflections must be similar and sufficient [2].
Let $M=\{1,2,3, \ldots, n\}, \quad n>1$ be a value reflection of set $F: M \rightarrow M$.
The points i $i_{s}(s=\overline{1, k})$ that satisfy the equations $F\left(i_{1}\right)=F\left(i_{2}\right)=\ldots=F\left(i_{k}\right)$ in the set M are called adjacent points. If F is not mutually exclusive, then of course there will be adjacent points. Similarly, there are $t_{1}, t_{2}, \ldots, t_{p}$ points that satisfy the $F\left(t_{1}\right)=F\left(t_{2}\right)=\ldots=F\left(t_{p}\right)=t_{1}$ equations, which are called F reflection cycles. The number of F reflection cycles can also be more than one.

They are called F reflection cycles. The number of F reflection cycles can also be more than one.
For example,

$$
A=\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 3 & 4 & 2 & 5 & 7 & 8 & 9 & 10 & 10
\end{array}\right) ; F(1)=F(4)=2 ; F(9)=F(10)=10
$$

equations are fulfilled, then points 1 and 4 and 9,10 will be adjacent points. (2 34) and 10 points form loops.

Theorem 3. All elements set that assume 0 value in reflection cycle F in the $R_{n}(F)$ circle is the maximum ideal of the $R_{n}(F)$ circle.
Proof. Let F be a reflection cycle $i_{1}, i_{2}, \ldots, i_{k}$ points, that is, let the $F\left(i_{1}\right)=F\left(i_{2}\right)=\ldots=F\left(i_{k}\right)=i_{1}$ equations be satisfied. Let J denote the set of all elements
that assume 0 value at these points. The product of 2 arbitrary Z elements in X and R of 2 elements belonging to J
$\left(x^{*} z\right)(t)=x(F(t)) Z(F(t))$
again belongs to J, because F reflects the cycle elements again to the cycle elements, and $x(F(t))$ assumes a 0 value when the function t belongs to the cycle. Hence, the function $\left(x^{*} z\right)(t)$ is equal to 0 when t belongs to the cycle. Thus, the set J becomes the ideal of the circle $R_{n}(F)$.

We now show that this ideal is the maximum ideal, i.e., that the ideal J does not lie within the ideal other than the R circle. To do this, we assume the opposite, that is, that such an ideal $J_{1} \subset R_{n}(F)$ exists and those conditions $J \subset J_{1} \quad$ and $J \neq J_{1}$ are satisfied. Under this condition, the function $f(t) J_{1}$, which takes a value greater than 0 at least one point of the $i_{1}, i_{2}, \ldots, i_{k}$ cycle, belongs to the ideal. Let the function $f(t)$ be equal to 1 at point i_{1} of the cycle without limiting the generality.
If we multiply this function by the operation $*$ in the $R_{n}(F)$ circle to the function that takes 0 from all other points at point i_{1} in the circle $R_{n}(F)$, we show that at point i_{k-1} of the cycle the function 1 and at all other points of $M 0$ also belong to the ideal J_{1}. And so on, if we repeat this process $k=2$ times, it follows that the ideal J_{1} corresponds to k elements of the arithmetic base, which is equal to 1 at 1 point of the $i_{1}, i_{2}, \ldots, i_{k}$ cycle and 0 at other points. It follows from the condition $J \subset J_{1}$ that the elements J_{1} which at the $i_{1}, i_{2}, \ldots, i_{k}$ cycle points of the set M take a value of 0 and at each other point (they are $n-k$) 1 belong to the ideal. Thus, we have created that the
$l_{1}=(1,0, \ldots, 0), \quad l_{2}=(0,1,0, \ldots, 0), \ldots, l_{n}=(0, \ldots, 0,1)$
vectors, consisting of the arithmetic basis of the $R_{n}(F)$ circle, correspond to the J_{1} ideal. This indicates that $J_{1}=R_{n}(F)$ is, i.e., J is the maximum of the ideal.
Taking any point S_{1} of the set M, the sequence of points $F\left(S_{1}\right), F\left(F\left(S_{1}\right)\right)=F^{2}\left(S_{1}\right), \ldots$ is followed by the equation $F^{p}\left(S_{1}\right)=F^{q}\left(S_{1}\right)$ after one p steps, here $q \leq p$. If point S_{1} belongs to any cycle in M, then a sequence of points belonging to the cycle follows.
If point S_{1} does not belong to any cycle, then $S_{1}, F\left(S_{1}\right), F^{2}\left(S_{1}\right), \ldots, F^{p-1}\left(S_{1}\right)$ iterative sequence is formed.
It can be proved that for any point t obtained from M, the set of all elements assuming a value of 0 at all points belonging to the iterative sequence $t, F(t), \ldots, F^{p}(t)$ is the $R_{n}(F)$ circle ideal. This ideal is part of the maximum ideal generated by the cycle that belongs to this iterative sequence. We call the ideals created by this method the type I ideal of the $R_{n}(F)$ circle.
For example, if a reflection of the form
$F=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 2 & 5 & 7 & 8 & 9 & 9\end{array}\right)$
is given

Vol 12, Issue 03, 2021

$$
1, F(1)=2, \quad F^{2}(1)=3, \quad F^{3}(1)=4, \quad F^{4}(1)=2
$$

equations are satisfied, elements $1,2,3,4$ are an iterative sequence to which the cycle $(2,3,4)$ belongs. The $M=\{1,2,3,4,5,6,7,8,9\}$ set consists of 5 element loops, as well as 9 element loops. Elements $6,7,8,9$, as well as elements $7,8,9$ and 8,9 are iterative sequences.

Theorem 4. If reflection $F: M \rightarrow M$ is given and points $i_{1}, i_{2}, \ldots, i_{s}$ are adjacent points relative to reflection F, then the elements of the $R_{n}(F)$ circle that satisfy the condition $a_{1} t_{i_{1}}+a_{2} t_{i_{2}}+\ldots+a_{5} t_{i_{5}}=0$ for any real number satisfying the condition $a_{1}+a_{2}+\ldots+a_{5}=0$ (at least one $a_{i}=0$) constitute its ideal.
Proof. To simplify the notation, suppose that points $1,2,3$ are adjacent points to reflect F. Let the equation $a_{1}, a_{2}, a_{3}=0$ be satisfied for a_{1}, a_{2}, a_{3} numbers, one of which is different from 0 . We show that a set of $x(t)=\left(t_{1}, t_{2}, t_{3}, \ldots, t_{n}\right)$ elements satisfying condition $a_{1} t_{1}+a_{2} t_{2}+a_{3} t_{3}=0$ makes J ideal. We take another $y(t)=\left(u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right)$ element belonging to J, add them, and make
$(x+y)(t)=\left(t_{1}+u_{1}, t_{2}+u_{2}, t_{3}+u_{3}, \ldots, t_{n}+u_{n}\right)$
for the $a_{1}\left(t_{1}+n_{1}\right)+a_{2}\left(t_{2}+u_{2}\right)+a_{3}\left(t_{3}+u_{3}\right)=0$ element, because the $x, y \in J$ relation is reasonable. Since points $1,2,3$ are adjacent points, the $F(1)=F(2)=F(3)$ equations are satisfied. The product of $x \in J$ and $f \in R_{n}(F)$ elements assumes the same value at points $(x * t)(t) 1,2,3$, i.e. $(x * 1)(1)=(x * f)(2)=(x * t)(3) ;$
because
$x(F(1)) \cdot f(F(1))=x(F(2)) \cdot f(F(2))=x(F(3)) \cdot f(F(3))$;
equations are satisfied. If we set this value to b, based on equality
$(x * f)(1)=(x * f)(2)=(x * f)(3)=b$
we create an equation
$a_{1} b+a_{2} b+a_{3} b=b\left(a_{1}+a_{2}+a_{3}\right)=0$
Therefore, a $\left(x^{*} f\right)(t) \in J$ relationship is appropriate, i.e. the J set is ideal.
We call the ideals of the $R_{n}(F)$ circle determined by theorem 4 the type II ideal.

3. REFERENCES.

[1] S.N.Nosirov, D.D.Aroev. About a certain class of non-associative algebra/ Republican scientific conference on "Actual problems of stochastic analysis", dedicated to the 80th anniversary of Academician Sh. Farmonov. Tashkent, February 20-21, 2021, 430-432p.
[2] A.G. Kurosh / Course of Higher Algebra. The science, M.: 1975.
[3] S.N. Nasirov / Description of the ideals of a class of non-associative algebras. Scientific works of Tashkent State University, issue 418,1972. -p. 232-236.
[4] S.N. Nasirov "On the ideals of a class of finite-dimensional non-associative algebras" Proceedings of the Tashkent State University, issue 461,1974. -p 86-89.
[5] I.M. Gelfand "Lectures on linear algebra" Science, M. 1966.

International Journal of Aquatic Science
ISSN: 2008-8019
Vol 12, Issue 03, 2021
[6] B.L. Van der Waerden "Modern Algebra" Gostekhizdat, M. 1947
[7] A.G. Kurosh "Lectures on General Algebra" Science, M. 1962.
[8] N.L. Jacobson "Built of circles" IL. 1961.
[9] A. Cardan, S. Eilenberg "Homological Algebra" Il. 1960.
[10] G. Weil "Algebraic number theory" IL. 1949.

