ISSN: 2008-8019 Vol 12, Issue 02, 2021

Gη-Closed, Continuity And Contra Continuity In Topological Ordered Spaces

K. Sumathi¹,T. Arunachalam²,D. Subbulakshmi³,K. Indirani⁴

Email: 1ksumathi@psgrkcw.ac.in, 2tarun_chalam@yahoo.com. 3 subbulakshmi169@gmail.com, 4 indirani009@ymail.com.

Abstract: The aim of this paper is to introduce a new class of closed sets in topological ordered spaces called xg η -closed sets and obtain some of its characteristics. The concept of continuous and contra continuous functions are called xg η -continuous,xcontrag η -continuous is defined and obtained some of its properties.

Keywords: xgn-closed set,xgn-continuous, xcontragn-continuousfunctions.

1. INTRODUCTION

In 1965, Nachbin [16] initiated the study of topological ordered spaces. In 2001, Veerakumar [27] introduced the study of i-closed, d-closed and b-closed sets. A new class of gη-closed sets, gη-continuity functions and contra gη-continuity functions has been introduced Subbulakshmi et al [22, 23, 24]. In 2017, Amarendrababu [1] introduced g*-closed sets in topological ordered spaces. In 2019, Dhanapakyam [7] introduced β g*-closed sets in topological ordered spaces. In this paper a new class of xgη-closed set, xgη-continuous, xcontragη-continuous in topological ordered spaces are defined and some of their properties are analyzed. [Throughout this paper x = i, d, b].

2. PRELIMINARIES

Definition : 2.1 A subset A of a topological space (X, τ) is called

- (i) α -open set [2] if A \subseteq int(cl(int(A))), α -closed set if cl (int (cl(A))) \subseteq A.
- (ii) semi-open set [12] if A \subseteq cl(int (A)), semi-closed set if int (cl(A) \subseteq A.
- (iii) regular-open set [17] if A = int(cl(A)), regular-closed set if A = cl(int(A))).
- (iv) η -open set [21] if A \subseteq int (cl(int(A))) \cup cl (int (A)), η -closed set if cl (int (cl (A))) \cap int(cl(A)) \subseteq A.

Definition : 2.2 A subset A of a space (X, τ) is called

- (i) g-closed set [13] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (ii) g*-closed set [26] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .

¹Associate Professor, Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, India

² Professor, Department of Mathematics, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India

³ Assistant Professor, Department of Mathematics, RathnavelSubramaniam College of Arts and Science, Coimbatore, Tamilnadu, India

⁴Associate Professor, Department of Mathematics, Nirmala College for Women, Coimbatore, Tamilnadu, India

ISSN: 2008-8019 Vol 12, Issue 02, 2021

- (iii) sg-closed set [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- (iv) gn-closed set [22] if $\eta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

Definition : 2.3 A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called

- (i) continuous [3] if $f^{-1}(V)$ is a closed in (X, τ) for every closed set V of (Y, σ) .
- (ii) semi-continuous [12] if $f^{-1}(V)$ is a semi-closed in (X, τ) for every closed set V of (Y, σ) .
- (iii) α -continuous [6] if $f^{-1}(V)$ is a α -closed in (X, τ) for every closed set V of (Y, σ) .
- (iv)r-continuous [14] if f⁻¹ (V) is a r-closed in (X, τ) for every closed set V of (Y, σ) .
- (v) sg-continuous [25] if f⁻¹ (V) is a sg-closed in (X, τ) for every closed set V of (Y, σ) .
- (vi) η -continuous [23] if f⁻¹ (V) is a η -closed in (X, τ) for every closed set V of (Y, σ).
- (vii) gη-continuous [23] if $f^{-1}(V)$ is a gη-closed in (X, τ) for every closed set V of (Y, σ) .

Definition : 2.4 A function $f:(X, \tau) \to (Y, \sigma)$ is called

- (i) contra continuous [8] if f⁻¹ (V) is a closed in (X, τ) for every open set V of (Y, σ) .
- (ii) contra semi-continuous [9] if $f^{-1}(V)$ is a semi-closed in (X, τ) for every open set V of (Y, σ) .
- (iii) contra α -continuous [10] if $f^{-1}(V)$ is an α -closed in (X,τ) for every open set V of (Y,σ) .
- (iv) contra r-continuous [14] if $f^{-1}(V)$ is a r-closed in (X, τ) for every open set V of (Y, σ) .
- (v) contra g-continuous [5] if $f^{-1}(V)$ is a g-closed in (X, τ) for every open set V of (Y, σ) .
- (vi) contra g*-continuous [15, 26] if f $^{-1}$ (V) is a g*-closed in (X, τ) for every open set V of (Y, σ).
- (vii) contrasg-continuous [19] if $f^{-1}(V)$ is a sg-closed in (X, τ) for every open set V of (Y, σ) .
- (viii) contraq-continuous [24] if $f^{-1}(V)$ is a η -closed in (X, τ) for every open set V of (Y, σ) . (ix) contrag η -continuous [24] if $f^{-1}(V)$ is a $g\eta$ -closed in (X, τ) for every open set V of (Y, σ) .

Definition 2.5: [27] A topological ordered spaces is a triple (X, τ, \leq) where ' τ ' is a topology on X and ' \leq ' is a partial order on X.

Let A be a subset of topological ordered space (X, τ, \leq) .

For any $x \in X$,

- (i) $[x, \rightarrow] = \{ y \in X/x \le y \}$ and
- (ii) $[\leftarrow, x] = \{y \in X/y \le x\}.$

The subset A is said to be

- (i) increasing if A = i(A), where $i(A) = \bigcup_{a \in A} [a, \rightarrow]$ and
- (ii) decreasing if A = d(A), where $d(A) = \bigcup_{\alpha \in A} [\leftarrow, \alpha]$
- (iii) balanced if it is both increasing and decreasing.

The complement of an increasing set is a decreasing set and the complement of a decreasing set is an increasing set.

Definition: 2.6A subset A of a topological ordered space (X, τ, \leq) is called

- (i)x-closed set [7]ifitis bothincreasing (resp. decreasing, increasing and decreasing) set and closed set.
- (ii) $x\alpha$ -closed set [11] if it is both increasing (resp. decreasing, increasing and decreasing) set and α -closed set.
- (iii) xsemi-closed set [11]ifit is both increasing(resp. decreasing, increasing and decreasing) set and semi-closed set.

ISSN: 2008-8019 Vol 12, Issue 02, 2021

(iv) xr-closed set [7] if it is both increasing(resp. decreasing, increasing and decreasing) set and r-closed set.

- (v) xg-closed set [20]if it is both increasing(resp. decreasing, increasing and decreasing) set and g-closed set.
- (vi) xg*-closed set [1] if it is both increasing(resp. decreasing, increasing and decreasing) set and g*-closed set.
- (vii) xsg-closed set [18] if it is both increasing(resp. decreasing, increasing and decreasing) set and sg-closed set.

Definition :2.7A function f: $(X, \Box \Box \leq) \rightarrow (Y, \sigma, \leq)$ is called (i) x-continuous[7] if f⁻¹(V) is x-closed subset of $(X, \Box \Box \leq)$ for every closed subset of (Y, σ, \leq) .

(ii) $x\alpha$ -continuous[11] if $f^{-1}(V)$ is $x\alpha$ -closed subset of $(X, \Box \Box \leq)$ for every closed subset of (Y, σ, \leq) .

(ii) xsemi-continuous [11] if $f^{-1}(V)$ is xsemi-closed subset of $(X, \Box \Box \leq)$ for every closed subset of (Y, σ, \leq) .

(ii) xr-continuous[7] if f $^{-1}(V)$ is xr-closed subset of $(X, \Box \Box \leq)$ for every closed subset of (Y, σ, \leq) .

(ii) xsg-continuous [18] if $f^{-1}(V)$ isxsg-closed subset of $(X, \Box \Box \leq)$ for every closed subset of (Y, σ, \leq) .

[Throughout this paper x = i, d, b]

3. On $ig\eta$ -closed set:

Definition : 3.1 A subset A of a topological ordered space (X, τ, \leq) is called an i η -closed set if it is both increasing and η -closed set.

Definition : 3.2A subset A of a topological ordered space (X, τ, \leq) is called an ig η -closed set if it is both increasing and g η -closed set.

Theorem : 3.3Every i-closed, isemi-closed, i α -closed, ir-closed, ig*-closed, i η -closed sets are ig η -closed set, but not conversely.

Proof: Every closed, semi-closed, α -closed, r-closed, g*-closed, η -closed sets are g η -closed set [22]. Then every i-closed, isemi-closed, i α -closed, ir-closed, ig*-closed, i η -closed sets areig η -closed set.

EXAMPLE : 3.4Let $X = \{a, b, c\}$, $\square = \{\phi, X, \{a\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly $(X, \square \square \subseteq \leq)$ is a topological ordered space. ign-closed sets are $\{\phi, X, \{c\}, \{b, c\}\}$. i-closed, isemi-closed, in-closed, ig-closed, in-closed, ig-closed, in-closed, ign-closed, ign-cl

Theorem : 3.5Every ig-closed set is an ign-closed set, but not conversely.

Proof: Every g-closed set is a $g\eta$ -closed set [22]. Then every ig-closed set is an $ig\eta$ -closed set.

EXAMPLE : 3.6Let $X = \{a, b, c\}$, $\Box \Box = \{ \phi, X, \{a\}, \{b\}, \{a, b\} \}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (a, c) \}$. Clearly $(X, \Box \Box \subseteq)$ is a topological ordered space. ign-closed sets are $\{\phi, X, \{b\}, \{c\}, \{b, c\} \}$. Let $A = \{b\}$. Clearly A is an ign-closed set but not an ig-closed set in X.

ISSN: 2008-8019 Vol 12, Issue 02, 2021

Theorem :3.7Every isg-closed set is an ign-closed set, but not conversely.

Proof: Every sg-closed set is a gη-closed set [22]. Then every isg-closed set is an igη-closed set.

EXAMPLE :3.8Let $X = \{a, b, c\}$, $\square \square = \{ \phi, X, \{a\} \}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (c, b) \}$. Clearly $(X, \square \square \square \subseteq)$ is a topological ordered space. ign-closed sets are $\{\phi, X, \{b\}, \{a, b\}, \{b, c\} \}$. Let $A = \{a, b\}$. Clearly A is an ign-closed set but not an isg-closed set in X.

4. On dgη-closed set:

Definition : 4.1 A subset A of a topological ordered space (X, τ, \leq) is called a $d\eta$ -closed set if it is both decreasing and $d\eta$ -closed set.

Definition : 4.2A subset A of a topological ordered space (X, τ, \leq) is called a dg η -closed set if it is both decreasing anddg η -closed set.

Theorem : 4.3 Every d-closed set, d α -closed, dg-closed, dg*-closedsets are dg η -closed set, but not conversely.

Proof: Every closed set, α -closed, g-closed, g*-closed sets are g η -closed set [22]. Then every d-closed, d α -closed, dg*-closed sets are dg η -closed set.

EXAMPLE : 4.4Let $X = \{a, b, c\}$, $\square \square = \{ \phi, X, \{a\}, \{b\}, \{a, b\} \}$ and $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Clearly $(X, \square \square \subseteq \leq)$ is a topological ordered space. dg η -closed sets are $\{\phi, X, \{a\}, \{a, c\}\}$.

d-closed, d α -closed, dg-closed sets are { ϕ , X, {a, c}}. Let A = {a}. Clearly A is a dg-closed set but not a d-closed, d α -closed, dg-closed, dg-closed set in X.

Theorem : 4.5Every dsemi-closed, dsg-closed, d η -closed sets are dg η -closed set, but not conversely.

Proof: Every semi-closed, sg-closed, η-closed sets are gη-closed set [22]. Then every dsemi-closed, dsg-closed, dη-closed sets are dgη-closed set.

EXAMPLE : 4.6Let $X = \{a, b, c\}$, $\Box \Box = \{\phi, X, \{a\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Clearly $(X, \Box \Box \subseteq)$ is a topological ordered space. dg η -closed sets are $\{\phi, X, \{c\}\}$. Let $A = \{a, c\}$. Clearly A is a dg η -closed set but not a dsemi-closed, dg η -closed set in X.

Theorem :4.7Every dr-closed set is a dgη-closed set, but not conversely.

Proof: Every r-closed set is a $g\eta$ -closed set [22]. Then every dr-closed set is a $dg\eta$ -closed set.

EXAMPLE :4.8Let $X = \{a, b, c\}$, $\Box \Box = \{\phi, X, \{a\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly $(X, \Box \Box \Box \leq)$ is a topological ordered space. dg η -closed sets are $\{\phi, X, \{a\}, \{a, b\}\}$. Let $A = \{a, b\}$. Clearly A is a dg η -closed set but not a dr-closed set in X.

5. On bgη-closed set:

Definition : 5.1 A subset A of a topological ordered space (X, τ, \leq) is called a by-closed set if it is both increasing and decreasing y-closed set.

Definition : 5.2A subset A of a topological ordered space (X, τ, \leq) is called a bg η -closed set if it is both increasing and decreasing $g\eta$ -closed set.

ISSN: 2008-8019 Vol 12, Issue 02, 2021

Theorem : 5.3Every b-closed, ba-closed, bg-closed, bg*-closed sets are bg η -closed set, but not conversely.

Proof: Every closed, α -closed, g-closed, g*-closed sets are g η -closed set [22]. Then every b-closed, b α -closed, bg*-closed sets are bg η -closed set.

EXAMPLE : 5.4Let $X = \{a, b, c\}$, $\square \square = \{ \phi, X, \{a\}, \{b\}, \{a, b\} \}$ and $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Clearly $(X, \square \square \subseteq)$ is a topological ordered space. bg η -closed sets are $\{ \phi, X, \{b\}, \{a, c\} \}$.

b-closed, b α -closed, bg-closed, bg*-closed sets are $\{\phi, X, \{a, c\}\}$. Let $A = \{b\}$. Clearly A is a bgg-closed set but not a b-closed, bg-closed, bg-closed, bg*-closed set in X.

Theorem :5.5Every br-closed set is a bgη-closed set, but not conversely.

Proof: Every r-closed set is a $g\eta$ -closed set [22]. Then every br-closed set is a $g\eta$ -closed set.

EXAMPLE : 5.6Let $X = \{a, b, c\}$, $\Box \Box = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Clearly $(X, \Box \Box \subseteq b)$ is a topological ordered space. bg η -closed sets are $\{\phi, X, \{b\}, \{a, c\}\}\}$. Let $A = \{b\}$. Clearly A is a bg η -closed set but not a br-closed set in X.

Theorem :5.7Every bsemi-closed, bsg-closed, bη-closed sets are bgη-closed set, but not conversely.

Proof: Every semi-closed, sg-closed, η -closed sets are g η -closed set [22]. Then every bsemi-closed, bsg-closed, b η -closed sets are bg η -closed set.

EXAMPLE : 5.8Let $X = \{a, b, c\}$, $\square \square = \{ \phi, X, \{a\} \}$ and $\leq = \{(a, a), (b, b), (c, c), (a, c) \}$. Clearly $(X, \square \square \subseteq)$ is a topological ordered space. bg η -closed sets are $\{ \phi, X, \{b\}, \{a, c\} \}$. bsemi-closed, bg-closed sets are $\{ \phi, X, \{b\} \}$. Let $A = \{a, c\}$. Clearly A is a bg η -closed set but not a bsemi-closed, bg-closed, b η -closed set in X.

6. Onigη-continuity

Definition : 6.1 A function $f: (X, \Box \Box \leq) \to (Y, \sigma, \leq)$ is called in-continuous if $f^{-1}(V)$ is in-closed subset of $(X, \Box \Box \leq)$ for every closed subset of (Y, σ, \leq) .

Definition : 6.2 A function $f: (X, \Box \Box \leq) \to (Y, \sigma, \leq)$ is called ign-continuous if $f^{-1}(V)$ is ign-closed subset of $(X, \Box \Box \leq)$ for every closed subset of (Y, σ, \leq) .

Theorem : 6.3Every i-continuous functions isign-continuous, but not conversely.

Proof: The proof follows from the fact that every i-closedsets are ign-closed set.

Example : 6.4Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \square \{a\}\} \text{ and } \sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\} . \le = \{(a, a), \{a, b\}\}$

(b, b), (c, c), (a, c), (b, c)}. Define a map $f: (X, \Box \Box \leq) \to (Y, \sigma, \leq)$ by f(a) = a, f(b) = b, f(c) = c. This map is $ig\eta$ -continuous, but not i-continuous, since for the closed set $V = \{c\}$ in (Y, σ, \leq) , $f^{-1}(V) = \{c\}$ is not i-closedin $(X, \Box \Box \leq)$.

Theorem: 6.5Everyisemi-continuous, i α -continuous, isg-continuous, i η -continuous functions are ign-continuous, but not conversely.

Proof: The proof follows from the fact that every isemi-closed, i α -closed, isg-closed, inclosed sets are ign-closed set.

ISSN: 2008-8019 Vol 12, Issue 02, 2021

Example : 6.6Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \square \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}\}$. $\leq = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Define a map $f: (X, \square \square \leq) \to (Y, \sigma, \leq)$ by f(a) = a, f(b) = c, f(c) = b. This map is ign-continuous, but notisemi-continuous, ia-continuous, isg-continuous, in-continuous, in-continuous, isg-continuous, in-continuous, in-continuous,

Theorem: 6.7Everyir-continuous function is $ig\eta$ -continuous, but not conversely. **Proof:** The proof follows from the fact that every ir-closed set is an $ig\eta$ -closed set. **Example: 6.8**Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \ \{a\}, \{b\}, \{a, b\}\} \ \text{and} \ \sigma = \{Y, \phi, \{a\}, \{b, c\}\} \ .$ $\leq = \{(a, a), (b, b), (c, c), (a, b), (a, c), (b, c)\}$. Define a map $f: (X, \square \square \leq) \to (Y, \sigma, \leq)$ by f(a) = a, f(b) = b, f(c) = c. This map is $ig\eta$ -continuous, but not ir-continuous, since for the closed set $V = \{c\}$ in $(Y, \sigma, \leq), f^{-1}(V) = \{c\}$ is not ir-closed in $(X, \square \square \leq)$.

7. Ondgη-continuity

Definition : 7.1 A function f: $(X, \Box \Box \leq) \to (Y, \sigma, \leq)$ is called d η -continuous if f $^{-1}(V)$ is d η -closed subset of $(X, \Box \Box \leq)$ for every closed subset of (Y, σ, \leq) . **Definition : 7.2**A function f: $(X, \Box \Box \leq) \to (Y, \sigma, \leq)$ is called dg η -continuous if f $^{-1}(V)$ is dg η -closed subset of $(X, \Box \Box \leq)$ for every closed subset of (Y, σ, \leq) .

Theorem:7.3Every d-continuous, dsemi-continuous, d α -continuous, dr-continuous, dn-continuous functions are dg η -continuous, but not conversely.

Proof: The proof follows from the fact that every d-closed, dsemi-closed, d α -closed, dr-closed, d η -closed sets are dg η -closed set.

Example : 7.4Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \square \{a\}, \{b, c\}\} \text{ and } \sigma = \{Y, \phi, \{a\}\} . \leq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Define a map $f: (X, \square \square \leq) \to (Y, \sigma, \leq)$ by f(a) = c, f(b) = b, f(c) = a. This map is d $g\eta$ -continuous, but not d-continuous, dsemi-continuous, d α -continuous, d α -continuous, since for the closed set $V = \{b, c\}$ in (Y, σ, \leq) , $f^{-1}(V) = \{a, b\}$ is not d-closed, dsemi-closed, d α -closed, d γ -closed, d γ -closed set in $(X, \square \square \leq)$.

Theorem: 7.5Everydsg-continuous function is dgη-continuous, but not conversely. **Proof:** The proof follows from the fact that every dsg-closed set is a dgη-closed set. **Example:7.6**Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \ \{a\}\} \}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\} \}$. $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map $f: (X, \square \square \leq) \to (Y, \sigma, \leq)$ by f(a) = b, f(b) = a, f(c) = c. This map is dgη-continuous, but not dsg-continuous, since for the closed set $V = \{a\}$ in (Y, σ, \leq) , $f^{-1}(V) = \{a, c\}$ is not dsg-closed in $(X, \square \square \leq)$.

8. Onbgη-continuity

Definition: 8.1 A function f: $(X, \Box \Box \leq) \to (Y, \sigma, \leq)$ is called bη-continuous if f $^{-1}(V)$ is bη-closed subset of $(X, \Box \Box \leq)$ for every closed subset of (Y, σ, \leq) . **Definition: 8.2**A function f: $(X, \Box \Box \leq) \to (Y, \sigma, \leq)$ is called bgη-continuous if f $^{-1}(V)$ is bgη-closed subset of $(X, \Box \Box \leq)$ for every closed subset of (Y, σ, \leq) .

Theorem:8.3Every b-continuous, bsemi-continuous, b α -continuous, br-continuous functions are bg η -continuous, but not conversely.

ISSN: 2008-8019 Vol 12, Issue 02, 2021

Proof: The proof follows from the fact that every b-closed, bsemi-closed, b α -closed, br-closedsets are bg η -closed set.

Example:8.4Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \square \{a\}, \{b\}, \{a, b\}\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}\}$. $\leq \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map $f: (X, \square \square \leq) \to (Y, \sigma, \leq)$ by f(a) = b, f(b) = a, f(c) = c. This map is b gy-continuous, but not b-continuous, bsemi-continuous, b-continuous, br-continuous, since for the closed set $V = \{b, c\}$ in (Y, σ, \leq) , $f^{-1}(V) = \{a, c\}$ is not b-closed, bsemi-closed, b-closed, br-closed set in $(X, \square \square \leq)$.

Theorem: 8.5Everyb η -continuous, bsg-continuous functions are bg η -continuous, but not conversely.

Proof: The proof follows from the fact that every $b\eta$ -closed, bsg-closed sets are $bg\eta$ -closed set

Example : 8.6Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \square \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}\}$. $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map $f: (X, \square \square \leq) \rightarrow (Y, \sigma, \leq)$ by f(a) = b, f(b) = a, f(c) = c. This map is bg η -continuous, but not b η -continuous, bsg-continuous, since for the closed set $V = \{a\}$ in $(Y, \sigma, \leq), f^{-1}(V) = \{b\}$ is not b η -closed, bsg-closed sets in $(X, \square \square \leq)$.

9. On Contra xgη-continuity

Definition:9.1 A function $f: (X, \Box \Box \Box \subseteq) \to (Y, \sigma, \leq)$ is called (i) xcontra-continuous if $f^{-1}(V)$ is x-closed in $(X, \Box \Box \subseteq)$ for every open set V in (Y, σ, \leq) .
(ii) xcontra α -continuous if f ⁻¹ (V) is x α -closed in (X, $\Box\Box\Box$) for every open set V in (Y, σ
≤). (iii) xcontrasemi-continuous if f ⁻¹ (V) is xsemi-closed in (X, □□□≤) for every open set V in
(Y, σ, \leq) .
(iv) xcontrar-continuous if f $^{-1}(V)$ is xr-closed in $(X, \Box\Box\Box\leq)$ for every open set V in (Y, σ, \Box)
\leq). (v) xcontra g-continuous if f ⁻¹ (V) is xg-closed in (X, $\Box\Box\Box\leq$) for every open set V in (Y, σ .
$\langle v \rangle$ xeoma g-continuous if $V \rangle$ is xg-closed in $(X, \Box \Box \Box \preceq)$ for every open set V in $(Y, 0)$
(vi) xcontrag*-continuous if f $^{-1}(V)$ is xg*-closed in $(X, \Box \Box \Box \leq)$ for every open set V in $(Y, \Box \Box)$
σ, \leq).
(vii) xcontrasg-continuous if f ⁻¹ (V) is xsg-closed in $(X, \Box \Box \Box \leq)$ for every open set V in (Y, σ, \leq) .
(viii) xcontran-continuous if f ⁻¹ (V) isxn-closed in $(X, \Box \Box \Box \leq)$ for every open set V in (Y, σ)
≤).
(ix) xcontragy-continuous if $f^{-1}(V)$ is xgy-closed in $(X, \Box \Box \leq)$ for every open set V in (Y, σ, \leq) .
U a == 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

Theorem: 9.2Every icontra-continuous, icontrasemi-continuous, icontraα-continuous, icontra r-continuous, icontraη-continuous functions are icontragη-continuous, but not conversely.

Proof: Every contra continuous, contra semi-continuous, contra α -continuous, contra r-continuous, contra η -continuous functions are contra η -continuous [24]. Then every icontra-continuous, icontrasemi-continuous, icontra α -continuous, icontra η -continuous functions are icontrag η -continuous.

Example: 9.3Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \square \{a\}, \{b, c\}\} \text{ and } \sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\} \}$. $\leq = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$. Define a map $f: (X, \square \square \leq) \to (Y, \sigma, \leq)$ by f(a) = c, f(b) = a, f(c) = b. This map is icontragn-continuous, but not icontra-continuous, icontrasemi-continuous, icontragn-continuous, since

ISSN: 2008-8019 Vol 12, Issue 02, 2021

for the open set $V = \{b\}$ in (Y, σ, \leq) , $f^{-1}(V) = \{c\}$ is not i-closed, isemi-closed, ia-closed, irclosed, in-closed in $(X, \Box \Box \leq)$.

Theorem: 9.4Everyicontrag-continuous, icontrag*-continuous functions are icontrag η -continuous, but not conversely.

Proof: Every contra g-continuous, contra g*-continuous functions are contra g η -continuous [24]. Then everyicontrag-continuous, icontrag*-continuousfunctions are icontrag η -continuous map.

Example: 9.5Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \square \{a\}, \{b\}, \{a, b\}\} \text{ and } \sigma = \{Y, \phi, \{a\}, \{b, c\}\} \}$. $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map $f: (X, \square \square \leq) \to (Y, \sigma, \leq)$ by f(a) = b, f(b) = a, f(c) = c. This map is icontragη-continuous, but not icontrag-continuous, icontra g^* -continuous, since for the open set $V = \{b, c\}$ in $(Y, \sigma, \leq), f^{-1}(V) = \{a, c\}$ is not ig-closed, ig*-closed in $(X, \square \square \leq)$.

Theorem: 9.6 Everyicontrasg-continuous function is icontragη-continuous, but not conversely.

Proof: Every contra sg-continuous function is contra $g\eta$ -continuous [24]. Then every icontrasg-continuous function is icontragη-continuous.

Example : 9.7Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \square \{a\} \{b\}, \{a, b\}\} \text{ and } \sigma = \{Y, \phi, \{a\}, \{b, c\}\} . \leq = \{(a, a), (b, b), (c, c), (a, c)\}.$ Define a map $f: (X, \square \square \leq) \to (Y, \sigma, \leq)$ by f(a) = b, f(b) = a, f(c) = c. This map is icontragη-continuous, but not icontrasg-continuous, since for the open set $V = \{a\}$ in (Y, σ, \leq) , $f^{-1}(V) = \{b\}$ is not isg-closed in $(X, \square \square \leq)$.

Theorem: 9.8Everydcontrasemi-continuous, dcontra α -continuous, dcontrar-continuous, dcontrag*-continuous, dcontra η -continuous functions are dcontrag η -continuous, but not conversely.

Proof: Every contra semi-continuous, contra α -continuous, contra r-continuous, contra g*-continuous, contra η -continuous functions are contra g η -continuous [24]. Then every dcontrasemi-continuous, dcontra α -continuous, dcontra η -continuous, dcontra η -continuous functions are dcontrag η -continuous.

Example: 9.9Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \square \{a\}, \{b, c\}\} \text{ and } \sigma = \{Y, \phi, \{b, c\}\} . \leq = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$. Define a map $f: (X, \square \square \leq) \to (Y, \sigma, \leq)$ by f(a) = b, f(b) = a, f(c) = c. This map is dcontragη-continuous, but not dcontrasemi-continuous, dcontra α-continuous, dcontrar-continuous, dcontrag*-continuous, dcontraq-continuous, since for the open set $V = \{b, c\}$ in (Y, σ, \leq) , $f^{-1}(V) = \{a, c\}$ is not dsemi-closed, dα-closed, dr-closed, dg*-closed, dη-closed in $(X, \square \square \leq)$.

Theorem: 9.10Everydcontra-continuous, dcontrag-continuous functions are dcontragη-continuous, but not conversely.

Proof: Every contra continuous, contra g-continuous functions are contra $g\eta$ -continuous [24]. Then every dcontracontinuous, dcontrag-continuous functions are dcontrag η -continuous.

Example: 9.11Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \square \{a\}, \{b\}, \{a, b\}\}\}$ and $\sigma = \{Y, \phi, \{a\}\}\}$. $\leq = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Define a map $f: (X, \square \square \leq) \to (Y, \sigma, \leq)$ by f(a) = a, f(b) = c, f(c) = b. This map is dcontragη-continuous, but not dcontra-continuous, dcontrag-continuous, since for the open set $V = \{a\}$ in (Y, σ, \leq) , $f^{-1}(V) = \{a\}$ is not dclosed, dg-closed in $(X, \square \square \leq)$.

ISSN: 2008-8019 Vol 12, Issue 02, 2021

Theorem: 9.12Everydcontrasg-continuous function is dcontragη-continuous, but not conversely.

Proof: Every contra sg-continuous function is contra gη-continuous [24]. Then every dcontrasg-continuous function is dcontragη-continuous.

Example:9.13Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \square \{a\} \{b\}, \{a, b\}\} \text{ and } \sigma = \{Y, \phi, \{a\}, \{b, c\}\} \}$. $\leq \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map $f: (X, \square \square \leq) \rightarrow (Y, \sigma, \leq)$ by f(a) = b, f(b) = a, f(c) = c. This map is dcontragn-continuous, but not dcontrasg-continuous, since for the open set $V = \{a\}$ in (Y, σ, \leq) , $f^{-1}(V) = \{b\}$ is not dsg-closed in $(X, \square \square \leq)$.

Theorem:9.14Every bcontra-continuous, bcontrag-continuous, bcontrag-continuous, bcontrag-continuous, bcontrag*-continuous functions are bcontragη-continuous, but not conversely.

Proof: Every contra continuous, contra g-continuous, contra α -continuous, contra r-continuous, contra g*-continuous functions are contra g*-continuous [24]. Then every bcontra-continuous, bcontrag-continuous, bcontrag*-continuous, bcontrag*-continuous functions are bcontrag*-continuous.

Example:9.15Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \square \{a\}, \{b\}, \{a, b\}\} \text{ and } \sigma = \{Y, \phi, \{a\}\} . \leq = \{(a, a), (b, b), (c, c), (a, c)\}.$ Define a map $f: (X, \square \square \leq) \to (Y, \sigma, \leq)$ by f(a) = b, f(b) = a, f(c) = c. This map is becontragy-continuous, but not becontragy-continuous, becontragy-continuous, becontragy-continuous, since for the open set $V = \{a\}$ in (Y, σ, \leq) , $f^{-1}(V) = \{b\}$ is not b-closed, bg closed, bg-closed, br-closed, bg*-closed in $(X, \square \square \leq)$.

Theorem :9.16Every bcontrasemi-continuous, bcontrasg-continuous, bcontraη-continuous functions are bcontragη-continuous, but not conversely.

Proof: Every contra semi-continuous, contra sg-continuous, contra η -continuous functions are contra g η -continuous [24]. Then every bcontrasemi-continuous, bcontrasg-continuous, bcontra η -continuous functions are bcontrag η -continuous.

Example : 9.17Let $X = Y = \{a, b, c\}, \tau = \{X, \phi \square \{a\}\}$ and $\sigma = \{Y, \phi, \{a, b\}\}\}$. $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map $f: (X, \square \square \leq) \rightarrow (Y, \sigma, \leq)$ by f(a) = a, f(b) = c, f(c) = b. This map is becontragη-continuous, but not becontrasemi-continuous, becontrasg-continuous, becontraη-continuous, since for the open set $V = \{a, b\}$ in (Y, σ, \leq) , $f^{-1}(V) = \{a, c\}$ is not beemi-closed, bsg-closed, b η-closed in $(X, \square \square \leq)$.

10. REFERENCES:

- [1] Amarendrababu. V., Aswini. J., g*-closed sets in topological ordered spaces, International journal of Advanced in Management, Technology and Engineering Sciences, 7 (12) (2017), 113-125.
- [2] Andrijevic D. "Some properties of the topology of α -sets", Mat. Vesnik 36(1984).
- [3] Balachandran K, Sundaram P & Maki H, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math, 12(1991), 5-13.
- [4] Bhattacharya P, and Lahiri B. K, Semi–generalized closed set in topology, Indian J. Math. 29 (3) (1987), 375 382.
- [5] Caldas M, Jafari S, Noiri T, Simeos. M, A new generalization of contra-continuity via Levine s. g-closed sets, chaos solitons Fractals 42(2007), 1595-1603.
- [6] Devi R &Balachandran K (2001), Some generalizations of α -homeomorphisms in topological spaces , Indian J.PureAppl.Math, 32(4) : 551-563.

ISSN: 2008-8019 Vol 12, Issue 02, 2021

- [7] Dhanapakyam C., Indirani K.,On β g* Closed Sets in Topological Ordered Spaces, International Journal of Mathematics Trends and Technology, 65(1), (2019). 7-8.
- [8] Dontchev J. Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Sci. 19 (2) (1996), 303–10.
- [9] Dontchev J. and Noiri T., Contra-semi continuous functions, Math. Pannonica 10 (1999), 159–168.
- [10] Jafari S. and Noiri T, Contra α-continuous functions between topological spaces, Iran. Int. J. Sci., 2 (2001), pp. 153-167.
- [11] Krishna rao K., Some Concepts In Topological Ordered Spaces using semi-open sets, pre-open sets, α -open sets and β -open sets, AcharyaNagarjuna University Thesis, 2014.
- [12] Levine N., Semi open sets and semi continuity in Topological spaces, Amer. Math. Monthly,70(1963), 36-41.
- [13] Levine. N, Generalized closed sets in topology, Rend. Circ. Mat. Ser. III, 10, (1975), 347 350.
- [14] Mahmood. S. I. (2012), on generalized regular continuous functions in topological spaces, Kyungpook Math. J., 14:131 -143.
- [15] Murugalingam. M, Somasundaram. S and Palaniammal. S, A generalized star sets. Bulltin of Pure and Applied Science, 24(2):233:238, 2005.
- [16] Nachbin. L, Topology and order, Van Nostrand. D, Inc., Princeton, New Jersey [1965].
- [17] Pious Missier. S. and Annalakshmi.M., Between Regular Open Sets and Open Sets, Internat. J. Math. Archive, 7(5) (2016), 128-133.
- [18] Ramachandram V. V. S., SankaraRao B., Sg-continuity in Topological Ordered Spaces, Asian Research Journal of Mathematics, 11(1), 1-5, 2018.
- [19] Ravi O, Lellis Thivagar M, and Latha R, Properties of contra sg continuous maps, Gen. Math. Notes, vol.4, no.1, (2011), pp. 70 84.
- [20] Srinivasarao G., Srinivasarao. N., Ramprasad C. H., Subbarao M. V., g-closed type sets AND g*-closed type sets in topological ordered spaces, International Journal of Scientific & Engineering Research, 5(6), 1276-1285, 2014
- [21] Subbulakshmi. D, Sumathi. K, Indirani. K., η-open set in topological spaces, International Journal of Innovative Technology and Exploring Engineering, 8(10s) (2019), 276-282.
 - Subbulakshmi. D, Sumathi. K, Indirani. K., gη-closed set in topological spaces, International Journal of Recent Technology and Engineering, 8(3) (2019), 8863-8866.
- [23] Subbulakshmi. D, Sumathi. K, Indirani. K., gη-continuous in topological spaces, Advances in Mathematics: Scientific Journal 8 (2019), no.3, 677-682.
- [24] Subbulakshmi. D, Sumathi. K, Indirani. K., contra gη-continuity in topological spaces, International Journal of Advanced Science and Technology ,Vol. 28, No. 16, (2019), pp. 1253-1262.
- [25] Sundaram. P, Maki. H and Balachandran. K, Semi-generalized continuous maps and semi-
- [26] T_{1/2} spaces, Bull. Fukuoka Univ. Ed. Part-III, 40:33-40, 1991.
- [27] Veerakumar. M. K. R. S, Between g* closed sets and g closed sets Antartica J. Math, Reprint.
- [28] Veera Kumar. M.K.R.S., Homeomorphisms in topological ordered spaces, ActaCienciaIndica, XXVIII(M), No.1.(2002), 67-76.