

Few seperation axioms of $I_{g\delta s}$ -closed sets via ideal topological spaces

Mrs.C.Ramalakshmi¹ M.Raja kalaivanan²

 ¹Head ,Department of Mathematics,Madurai Sivakasi Nadars Pioneer Meenakshi Women's College Poovanthi,Sivagangai District - 630611.Ph.D. Registration No: P5081
²Assistant Professor, Department of Mathematics, Pasumpon Muthuramalinga Thevar College, Usilampatti, Madurai, Tamilnadu, India -625532

Email: ¹c.rarajakalaivanan@yahoo, ²commalakshmi69@gmail.com

Abstract: The main objective of this paper is to introduce the concept of $I_{g\delta s}$ -seperation axioms such as $I_{g\delta s}$ - T_i spaces where i = 0, 1, 2 and investigated their basic properties in ideal topological spaces.

Key Words and Phrases: Ideal topological spaces, ideal seperation axioms, seperation axioms, $I_{g\delta s}$ -closed sets.

1. INTRODUCTION

The concept of ideal topology in the classic text was introduced by Kuratowski [9]. D.Jankovie and R Hamlelt [8] introduced the concept of I open set in Ideal Topological Space. After that M.E.Abdel, E.Monsef, F.Iashien and A.A.Nasef [1] introduced a new study about the I open set. The notion of δg -closed sets was first introduced by Dontchev [4] in 1999. Julian Dontchev and maximilian Ganster [5], Yuksel, Acikgoz and Noiri [13] introduced and studied the notions of δ - generalized closed (briefly δg -closed) and δ -closed sets respectively. Ihe concept of seperation axioms in ideal topological spaces was investigated by various authors in [3], [11], [12], [10]. In this paper, we introduce and study the concept of $I_{g\delta s}$ -seperation axioms such as $I_{g\delta s}$ - T_i spaces where i = 0,1,2 with respect to an ideal, and investigated its basic properties.

2. PRELIMINARIES

We start with the definition of closure operator.

Definition 2.1 [14] An ideal topological space is a topological space (X, τ) with an ideal Ion X and it is denoted by (X, τ, I) . Given a topological space (X, τ) with an ideal I on Xand if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(*): \mathcal{P}(X) \to \mathcal{P}(X)$, called a local function of A with respect to τ and I, is defined as follows: for $A \subseteq X$, $A^*(I, \tau) = \{x \in$ $X/U \cap A \notin I$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau/x \in U\}$. We simply write A *instead of $A^*(I, \tau)$.

Definition 2.2 [14] An ideal I on a set X is a nonempty collection of subsets of X satisfying the following conditions

International Journal of Aquatic Science ISSN: 2008-8019 Vol 12, Issue 02, 2021

1. $A \in I$ and $B \subseteq A$ implies that $B \in I$.

2. $A \in I$ and $B \in I$ implies that $A \cup B \in I$.

Definition 2.3 [9] Let A be any subset of an ideal topological space (X, τ, I) . Define $A_{I,\tau}^* = \{x \in X/U \cap A \notin I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau/x \in U\}$, the collection of all open sets containing x. Let $cl^* = A \cup A_{I,\tau}^*$. Then " cl^* " is a Kuratowski closure operator which gives a topology τ^* on X called the *-topology.

Definition 2.4 [7] Let (X, τ, I) be an ideal space. A subset A of X is said to be

- *I*-open if $A \subseteq int(A^*)$.
- semi-*I*-open if $A \subseteq cl^*(int(A))$.
- pre-*I*-open if $A \subseteq int(cl^*(A))$.
- α -*I*-open if $A \subseteq int(cl^*(int(A)))$.
- β -*l*-open if $A \subseteq cl(int(cl^*(A)))$.

Let (X, τ, I) be an ideal topological space. Then every $\alpha - I$ -open set is α -open, every semi-*I*-open set is semi-open, every β -*I*-open set is β -open, every *I*-open set is pre-*I*-open, every α -*I*-open set is semi-*I*-open, every α -*I*-open set is semi-*I*-open, every β -*I*-open set is semi-*I*-open, every β -*I*-open set is semi-*I*-open, every pre-*I*-open set is β -*I*-open; the reverse implication is not true in any of the above.

3. SEPERATION AXIOMS

In this section, we introduce and study weak separation axioms such as $I_{g\delta s}$ - T_0 , $I_{g\delta s}$ - T_1 and $I_{g\delta s}$ - T_2 spaces and obtain some of their properties.

Definition 3.1 A topological space X is said to be $I_{g\delta s}$ - T_0 space if for each pair of distinct points x and y of X, there exists a $I_{a\delta s}$ -open set containing one point but not the other.

Theorem 3.2 A topological space X is a $I_{g\delta s}$ - T_0 space if and only if $I_{g\delta s}$ -closures of distinct points are distinct.

Proof Let x and y be distinct points of X. Since X is $I_{g\delta s} - T_0$ space, there exists a $I_{g\delta s}$ -open set G such that $x \in G$ and $y \notin G$. Consequently, X - G is a $I_{g\delta s}$ -closed set containing y but not x. But $I_{g\delta s}$ -cl{y} is the intersection of all $I_{g\delta s}$ -closed sets containing y. Hence $y \in I_{g\delta s} - cl\{y\}$ but $x \notin I_{g\delta s} - cl\{y\}$ as $x \notin X - G$. Therefore, $I_{g\delta s} - cl\{x\} \neq I_{g\delta s} - cl\{y\}$.

Conversely, let $I_{g\delta s}$ - $cl\{x\} \neq I_{g\delta s}$ - $cl\{y\}$ for $x \neq y$. Then there exists at least one point $z \in X$ such that $z \in I_{g\delta s}$ - $cl\{x\}$ but $z \notin I_{g\delta s}$ - $cl\{y\}$. We claim $x \notin I_{g\delta s}$ - $cl\{y\}$, because if $x \in I_{g\delta s}$ - $cl\{y\}$ then $\{x\} \subset I_{g\delta s}$ - $cl\{y\}$ implies $I_{g\delta s}$ - $cl\{x\} \subset I_{g\delta s}$ - $cl\{y\}$. So $z \in I_{g\delta s}$ - $cl\{y\}$, which is a contradiction. Hence $x \notin I_{g\delta s}$ - $cl\{y\}$, which implies $x \in X - I_{g\delta s}$ - $cl\{y\}$, which is a $I_{g\delta s}$ -open set containing x but not y. Hence X is $I_{g\delta s}$ - T_0 space.

Theorem 3.3 If $f: X \to V$ is a bijection strongly $I_{g\delta s}$ -open and X is $I_{g\delta s}$ - T_0 space, then V is also $I_{g\delta s}$ - T_0 space.

Proof Let y_1 and y_2 be two distinct points of V. Since f is bijective there exist distinct points x_1 and x_2 of X such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since X is $I_{g\delta s}$ - T_0 space there exists a $I_{g\delta s}$ -open set G such that $x_1 \in G$ and $x_2 \notin G$. Therefore $y_1 = f(x_1) \in f(G)$ and $y_2 = f(x_2) \notin f(G)$. Since f being strongly $I_{g\delta s}$ -open function, f(G) is $I_{g\delta s}$ -open in V

. Thus, there exists a $I_{g\delta s}$ -open set f(G) in V such that $y_1 \in f(G)$ and $y_2 \notin f(G)$. Therefore V is $I_{g\delta s}$ -T₀ space.

Definition 3.4 A topological space X is said to be $I_{g\delta s}$ - T_1 space if for any pair of distinct points x and y, there exist a $I_{g\delta s}$ -open sets G and H such that $x \in G$, $y \notin G$ and $x \notin H$, $y \in H$.

Theorem 3.5 A topological space X is $I_{g\delta s} - T_1$ space if and only if singletons are $I_{g\delta s}$ -closed sets.

Proof Let X be a $I_{g\delta s}$ - T_1 space and $x \in K$. Let $y \in K - \{x\}$. Then for $x \neq y$, there exists $I_{g\delta s}$ -open set K_y such that $y \in K_y$ and $x \notin K_y$. Consequently, $y \in K_y \subset X - \{x\}$. That is $X - \{x\} = [fK_y: y \in K - \{x\}g$, which is $I_{g\delta s}$ -open set. Hence $\{x\}$ is $I_{g\delta s}$ -closed set. Conversely, suppose $\{x\}$ is $I_{g\delta s}$ -closed set for every $x \in X$. Let x and $y \in X$ with $x \neq y$.

Conversely, suppose $\{x\}$ is $I_{g\delta s}$ -closed set for every $x \in X$. Let x and $y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in K - \{x\}$. Hence $K - \{x\}$ is $I_{g\delta s}$ -open set containing y but not x. Similarly, $K - \{y\}$ is $I_{g\delta s}$ -open set containing x but not y. Therefore X is $I_{g\delta s}$ - T_1 space.

Theorem 3.6 The property being $I_{g\delta s}$ - T_1 space is preserved under bijection and strongly $I_{g\delta s}$ -open function.

Proof Let $f: X \to V$ be bijective and strongly $I_{g\delta s}$ -open function. Let X be a $I_{g\delta s}$ - T_1 space and y_1 , y_2 be any two distinct points of V. Since f is bijective there exist distinct points x_1 , x_2 of X such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Now X being a $I_{g\delta s}$ - T_1 space, there exist $I_{g\delta s}$ -open sets G and H such that $x_1 \in G$, $x_2 \notin G$ and $x_1 \notin H$, $x_2 \in H$. Therefore $y_1 =$ $f(x_1) \in f(G)$ but $y_2 = f(x_2) \notin f(G)$ and $y_2 = f(x_2) \in f(H)$ and $y_1 = f(x_1) \notin f(H)$. Now f being strongly $I_{g\delta s}$ -open, f(G) and f(H) are $I_{g\delta s}$ -open subsets of V such that $y_1 \in f(G)$ but $y_2 \notin f(G)$ and $y_2 \in f(H)$ and $y_1 \notin f(H)$. Hence V is $I_{g\delta s}$ - T_1 space.

Theorem 3.7 Let $f: X \to V$ be bijective and $I_{g\delta s}$ -open function. If X is $I_{g\delta s}$ - T_1 and $TI_{g\delta s}$ -space, then V is $I_{g\delta s}$ - T_1 space.

Proof Let y_1 , y_2 be any two distinct points of V. Since f is bijective there exist distinct points x_1 , x_2 of X such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Now X being a $I_{g\delta s}$ - T_1 space, there exist $I_{g\delta s}$ -open sets G and H such that $x_1 \in G$, $x_2 \notin G$ and $x_1 \notin H$, $x_2 \in H$. Therefore $y_1 = f(x_1) \in f(G)$ but $y_2 = f(x_2) \notin f(G)$ and $y_2 = f(x_2) \in f(H)$ and $y_1 = f(x_1) \notin f(H)$. Now X is $I_{g\delta s}$ -space which implies G and H are open sets in X and f is $I_{g\delta s}$ -open function, f(G) and f(H) are $I_{g\delta s}$ -open subsets of V. Thus there exist $I_{g\delta s}$ -open sets such that $y_1 \in f(G)$ but $y_2 \notin f(G)$ and $y_2 \in f(H)$ and $y_1 \notin f(H)$. Hence V is $I_{g\delta s}$ - T_1 space.

Theorem 3.8 If $f: X \to V$ is $I_{g\delta s}$ -continuous injection and V is T_1 then X is $I_{g\delta s}$ - T_1 space. **Proof** Let $f: X \to V$ be $I_{g\delta s}$ -continuous injection and V be T_1 . For any two distinct points x_1, x_2 of X there exist distinct points y_1, y_2 of V such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since V is T_1 space there exist open sets G and H in V such that $y_1 \in G$, $y_2 \notin G$ and $y_1 \notin H$, $y_2 \in H$. That is $x_1 \in f^{-1}(G), x_1 \notin f^{-1}(H)$ and $x_2 \in f^{-1}(H), x_2 \notin f^{-1}(G)$. Since f is $I_{g\delta s}$ -continuous $f^{-1}(G), f^{-1}(H)$ are $I_{g\delta s}$ -open sets in X. Thus, for two distinct points x_1 ,

 x_2 of X there exist $I_{g\delta s}$ -open sets $f^{-1}(G)$ and $f^{-1}(H)$ such that $x_1 \in f^{-1}(G)$, $x_1 \notin f^{-1}(H)$ and $x_2 \in f^{-1}(H)$, $x_2 \notin f^{-1}(G)$. Therefore X is $I_{g\delta s}$ - T_1 space.

Theorem 3.9 If $f: X \to V$ is $I_{g\delta s}$ -irresolute injective function and V is $I_{g\delta s}$ - T_1 space then X is $I_{a\delta s}$ - T_1 space.

Proof Let x_1 , x_2 be pair of distinct points in X. Since f is injective there exist distinct points y_1 , y_2 of V such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since V is $I_{g\delta s}$ - T_1 space there exist $I_{g\delta s}$ -open sets G and Y in V such that $y_1 \in G$, $y_2 \notin G$ and $y_1 \notin H$, $y_2 \in H$. That is $x_1 \in f^{-1}(G)$, $x_1 \notin f^{-1}(H)$ and $x_2 \in f^{-1}(H)$, $x_2 \notin f^{-1}(G)$. Since f is $I_{g\delta s}$ -irresolute $f^{-1}(G)$, $f^{-1}(H)$ are $I_{g\delta s}$ -open sets in X. Thus, for two distinct points x_1 , x_2 of X there exist $I_{g\delta s}$ -open sets $f^{-1}(G)$ and $f^{-1}(H)$ such that $x_1 \in f^{-1}(G)$, $x_1 \notin f^{-1}(H)$ and $x_2 \in$ $f^{-1}(H)$, $x_2 \notin f^{-1}(G)$. Therefore X is $I_{g\delta s}$ - T_1 space.

Definition 3.10 A topological space X is said to be $I_{g\delta s}$ - T_2 space if for any pair of distinct points x and y, there exist disjoint $I_{g\delta s}$ -open sets G and H such that $x \in G$ and $y \in H$.

Theorem 3.11 If $f: X \to V$ is $I_{g\delta s}$ -continuous injection and V is T_2 then X is $I_{g\delta s}$ - T_2 space.

Proof Let $f: X \to V$ be $I_{g\delta s}$ -continuous injection and V be T_2 . For any two distinct points x_1, x_2 of X there exist distinct points y_1, y_2 of V such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since V is T_2 space there exist disjoint open sets G and H in V such that $y_1 \in G$ and $y_2 \in H$. That is $x_1 \in f^{-1}(G)$ and $x_2 \in f^{-1}(H)$. Since f is $I_{g\delta s}$ -continuous $f^{-1}(G), f^{-1}(H)$ are $I_{g\delta s}$ -open sets in X. Further f is injective, $f^{-1}(G)f^{-1}(H) = f^{-1}(G H) = f^{-1}(\emptyset) = \emptyset$. Thus, for two disjoint points x_1, x_2 of X there exist disjoint $I_{g\delta s}$ -open sets $f^{-1}(G)$ and $f^{-1}(H)$. Therefore X is $I_{g\delta s}$ - T_2 space.

Theorem 3.12 If $f: X \to V$ is $I_{g\delta s}$ -irresolute injective function and V is $I_{g\delta s}$ - T_2 space then X is $I_{g\delta s}$ - T_2 space.

Proof Let x_1 , x_2 be pair of distinct points in X. Since f is injective there exist distinct points y_1 , y_2 of V such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since V is $I_{g\delta s}$ - T_2 space there exist disjoint $I_{g\delta s}$ -open sets G and H in V such that $y_1 \in G$ and $y_2 \in H$. That is $x_1 \in f^{-1}(G)$ and $x_2 \in f^{-1}(H)$. Since f is $I_{g\delta s}$ -irresolute injective $f^{-1}(G)$, $f^{-1}(H)$ are distinct $I_{g\delta s}$ -open sets in X. Thus, for two disjoint points x_1 , x_2 of X there exist disjoint $I_{g\delta s}$ -open sets $f^{-1}(G)$ and $f^{-1}(H)$ such that $x_1 \in f^{-1}(G)$ and $x_2 \in f^{-1}(H)$. Therefore X is $I_{g\delta s}$ - T_2 space.

Definition 3.13 A topological space X is called $\delta - T_{3/4}$ if every $I_{g\delta s}$ -closed set in it is δ -closed.

Theorem 3.14 For a topological space X, if X is a δ - $T_{3/4}$ space, then every singleton set $\{x\}$ is δ -open or δ -closed.

Proof Suppose X is a δ - $T_{3/4}$ space. If $\{x\}$ is not δ -closed, then $X - \{x\}$ is not δ -open. Then the only δ -open set containing $X - \{x\}$ is X. Therefore $X - \{x\}$ is $I_{g\delta s}$ -closed set of X. Since X is a δ - $T_{3/4}$ space, $X - \{x\}$ is δ -closed, which implies $\{x\}$ is δ -open.

Theorem 3.15 Every δ - $T_{3/4}$ space is $T_{3/4}$ space.

Proof Follows from the fact that every δ -g-closed set is $I_{g\delta s}$ -closed set. **Definition 3.16** A subset A of X is δ -nowhere dense if $int(\delta$ -I-cl(A)) = \emptyset .

Lemma 3.17 For a topological space X the following are valid

- 1. Every singleton set is δ -pre closed or δ -open in *X*.
- 2. Every singleton set is δ -nowhere dense or δ -pre open in *X*.

Theorem 3.18 For a topological space the following are equivalent

- 1. X is δ -T_{3/4} space.
- 2. Every δ -pre closed singleton set of X is δ -closed.
- 3. Every non δ -open singleton set of X is δ -closed.

Proof(*i*) \Rightarrow (*ii*) Let $x \in X$ and $\{x\}$ be δ -pre closed in X. By above lemma, $\{x\}$ is not δ -open and hence by theorem 2.3.2, $\{x\}$ is δ -closed.

 $(ii) \Rightarrow (i)$ If $\{x\}$ is not δ -open for some $x \in X$, then by lemma 2.3.5, it is δ -pre closed and by (ii) it is δ -closed. Hence X is δ - $T_{3/4}$ space.

(*ii*) \Rightarrow (*iii*) If {x} is not δ -open for some $x \in X$, by lemma 2.3.5, {x} is δ - pre closed and by (ii), it is δ -closed.

 $(iii) \Rightarrow (ii)$ Let $\{x\}$ be δ -pre closed in $\{x\}$. By lemma 2.3.5, $\{x\}$ is not δ -open and hence by (iii), it is δ -closed.

Definition 3.19 A topological space X is called δ - $T_{1/2}$ space if every $I_{g\delta s}$ -closed set in it is semi closed.

Theorem 3.20 For a topological space X the following conditions are equivalent

- 1. X is δ - $T_{1/2}$ space.
- 2. Every singleton set is either δ -closed or semi open.

Proof(*i*) \Rightarrow (*ii*) If {x} is not δ -closed, then $X - \{x\}$ is not δ -open. Then the only δ -open set containing $X - \{x\}$ is X. Therefore $X - \{x\}$ is $I_{g\delta s}$ -closed set in X. By (i), $X - \{x\}$ is semi closed, which implies $\{x\}$ is semi open.

 $(ii) \Rightarrow (i)$ Let $A \subseteq X$ be $I_{g\delta s}$ -closed set and $x \in I_s cl(A)$. Then consider the following cases Case (1): Let $\{x\}$ be δ -open. Since $x \in I_s cl(A)$, then $\{x\} \cap I_s cl(A) \neq \emptyset$. This implies $x \in A$.

Case (2): Let $\{x\}$ be δ -closed. Assume that $x \notin A$, then $x \in I_s cl(A) - A$, which implies $\{x\} \subset I_s cl(A) - A$. This is not possible according to theorem 2.2.9. This shows that, $x \in A$. So in both cases, $I_s cl(A) \subset A$. Since the reverse inclusion is trivial, implies $I_s cl(A) = A$. Therefore A is semi-closed.

Theorem 3.21 Every δ - $T_{3/4}$ space is $I_{g\delta s}$ - $T_{1/2}$ space.

Proof Let X be a $\delta T_{3/4}$ space. Then by theorem 2.3.2, every singleton set of X is δ -open or δ -closed. But every δ -open set is semi open set. Thus every singleton set of X is semi open or δ -closed. By theorem 2.3.8, X is $I_{g\delta s}$ - $T_{1/2}$ space.

International Journal of Aquatic Science ISSN: 2008-8019 Vol 12, Issue 02, 2021

Theorem 3.22 Every $I_{g\delta s}$ - $T_{1/2}$ space is semi- $T_{1/2}$ space.

Proof Let A be sg-closed subset of X. Since every sg-closed set is $I_{g\delta s}$ -closed and X is $I_{g\delta s}$ - $T_{1/2}$ space, implies A is semi-closed. Hence X is semi- $T_{1/2}$.

Theorem 3.23 For any topological space X

- 1. $I_s \mathcal{O}(X) \subset I_{g\delta s} \mathcal{O}(X)$.
- 2. A space X is $\delta T_{1/2}$ space if and only if $I_s O(X) = I_{g\delta s} O(X)$.

Proof (i) if X is semi open, then X - A is semi closed. So X - A is $I_{g\delta s}$ -closed, this implies A is $I_{g\delta s}$ -open. Hence $I_s O(X) \subset I_{g\delta s} O(X)$.

(ii) Let A be a $I_{g\delta s} - T_{1/2}$ space and $A \in I_{g\delta s}O(X)$. Then X - A is $I_{g\delta s}$ -closed set. By hypothesis, X - A is semi-closed and hence $A \in I_sO(X)$. Therefore $I_{g\delta s}O(X) \subset I_sO(X)$. By (i), $I_sO(X)C \subset I_{g\delta s}O(X)$. Therefore $I_sO(X) = I_{g\delta s}O(X)$.

Conversely, let $I_s O(X) = I_{g\delta s} O(X)$ and A be a $I_{g\delta s}$ -closed set. Then X - A is $I_{g\delta s}$ -open. Hence X - A is semi open, which implies A is semi closed. Thus every $I_{g\delta s}$ -closed set is semi closed. Therefore X is $I_{g\delta s}$ - $T_{1/2}$ -space.

Lemma 3.24 For a space X the following are equivalent

- 1. Every δ -pre open singleton set is δ -closed.
- 2. Every singleton set is δ -nowhere dense or δ -closed.

Proof(*i*) \Rightarrow (*ii*) By Lemma 2.3.5, every singleton set is either δ -nowhere dense or δ -pre open. In the first case we are done and in the second case δ -closedness follows from the assumption.

 $(ii) \Rightarrow (i)$ Let $\{x\}$ be δ -pre open. Assume that $\{x\}$ is not δ -closed. Then by (ii), it is δ -nowhere dense. Thus $\{x\} \subset int(\delta - l - cl\{x\}) = \emptyset$, which is not possible. Hence $\{x\}$ is δ -closed.

Theorem 3.25 For a space X the following are equivalent

- 1. X is δ -T₁ space.
- 2. X is $\delta T_{3/4}$ space and every singleton set is δ -nowhere dense or δ -closed.
- 3. *X* is δ -*T*_{3/4} space and every δ -pre open singleton set is δ -closed.

Proof(*i*) \Rightarrow (*ii*) Obvious.

 $(ii) \Rightarrow (i)$ If singleton set is not δ -closed, then it must be δ -open, since X is δ - $T_{3/4}$ -space. But singleton set is δ -open if and only if it is regular open, which implies singleton set is regular open. Moreover, by rest of assumption X is δ -nowhere dense at the same time, X must be δ - T_1 -space.

 $(ii) \Rightarrow (iii)$ Follows from lemma 2.3.15.

Theorem 3.26 In any topological space the following are equivalent

- 1. X is $I_{q\delta s}$ - T_2 space.
- 2. For each $x \neq y$, there exists a $I_{g\delta s}$ -open set G such that $x \in G$ and $y \notin I_{g\delta s}$ -cl(G).
- 3. For each $x \in G$, $\{x\} = \cap \{I_{g\delta s} cl(G) : G \text{ is a } I_{g\delta s} \text{-open set in } X \text{ and } x \in G\}$.

International Journal of Aquatic Science ISSN: 2008-8019 Vol 12, Issue 02, 2021

Proof (1) \Rightarrow (2): Assume (1) holds. Let $x \in G$ and $x \neq y$, then there exist disjoint $I_{g\delta s}$ -open sets G and H such that $x \in G$ and $Y \in V$. Clearly, X - Y is $I_{g\delta s}$ -closed set. Since $G \cap Y = \emptyset$, $G \subset X - Y$. Therefore $I_{g\delta s}$ - $cl(G) \subset I_{g\delta s}$ -cl(X - Y) = X - Y. Now $y \notin X - Y$ implies $y \notin I_{g\delta s}$ -cl(G).

 $(2) \Rightarrow (3)$: For each $x \neq y$, there exists a $I_{g\delta s}$ -open set G such that $x \in G$ and $y \notin I_{g\delta s}$ -cl(G). So $y \notin I_{g\delta s}$ -cl(G): G is a $I_{g\delta s}$ -open set in X and $x \in G$ = {x }.

(3) \Rightarrow (1): Let $x, y \in X$ and $x \neq y$. By hpothesis there exists a $I_{g\delta s}$ -open set G such that $x \in G$ and $y \notin I_{g\delta s}$ -cl(G). This implies there exists a $I_{g\delta s}$ -closed set H such that $y \notin H$. Therefore $y \in X - H$ and X - H is $I_{g\delta s}$ -open set. Thus, there exist two disjoint $I_{g\delta s}$ -open sets G and X - H such that $x \in G$ and $y \in X - H$. Therefore X is $I_{g\delta s}$ - T_2 space.

4. REFERENCES

- [1] Abd El-Monsef, E. F. Lashien, and A. A. Nasef, "On *I*-open sets and *I*-continuous functions", Kyungpook Mathematical Journal, vol. 32, no. 1, 1992, pp. 21–30.
- [2] Akdag, M. *θ-I*-open sets, Kochi Journal of Mathematics, Vol.3, PP.217-229, 2008.
- [3] Balaji R, Rajesh N. Some new seperation axioms in ideal topological spaces. IJERT. 2013, 2(4), 38 48.
- [4] Dontchev, J. and M. Ganster, On δ -generalized closed sets and T3/4-spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17(1996), 15-31.
- [5] Dontchev, J., M. Ganster and T. Noiri, Unified approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [6] Dontchev, J. and H. Maki, On θ -generalized closed sets, International Journal of Mathematics and Mathematical Sciences, Vol.22, No.2, PP.239-249, 1999.
- [7] Hatir. E and Noiri. T, On Decompositions of Continuity via Idealization, Acta.Math.Hungar., 96(4) (2002), 341-349.
- [8] Jankovic, D. and T.R. Hamlett, New Topologies from old via ideals, The American Mathematical Monthly, Vol.97, No.4, PP.295-310, 1990. 10.1155.
- [9] Kuratowski. K, "Topology, Vol. I", Academic press, New York, 1966
- [10] Sakthi@Sathya B, Murugesan S. Regular pre semi I separation axioms in ideal topological spaces. IJERT. 2013, 2(3), 1 7.
- [11] Stella Irene Mary J, Poongothai K. g-separation axioms on ideal topological spaces. IJMA. 2014,6(1),1 - 9.
- [12] Suriyakala S, Vembu R. On seperation axioms in ideal topological spaces. Malaya Journal of Matematik. 2016, 4(2), 318 - 324
- [13] Yüksel. S, Ackgöz. A and Noiri. T, On δ -Continuous Functions, Turkish Journal of Mathematics, 29, 2005, 39 51.
- [14] Vaidyanathaswamy. R, The Localisation Theory in Set Topology, Proc. Indian Acad. Sci., 20 (1945), 51-61.