H_{k} - Cordial labeling of Some Graph and its Corona Graph

Jayshree Ratilal Joshi ${ }^{1}$, Dharamvirsinh Parmar ${ }^{2}$
${ }^{1}$ Research Scholar, C.U. Shah University, Assistant Professor in Mathematics, H.\&H.B.kotak institute of science,Rajkot.
${ }^{2}$ Assistant Professor in Mathematics, Department of Mathematics, C.U.Shah University Wadhwan, India

Email: ${ }^{1}$ jrjoshi15@gmail.com, ${ }^{2}$ dharamvir_21@yahoo.co.in
Abstract: - A graph $G=(V, E)$ is called H_{k} - cordial if for each edge e and each vertex v of G have the label $1 \leq|f(e)| \leq k, 1 \leq|f(v)| \leq k$ and $\left|v_{f}(i)-v_{f}(-i)\right| \leq 1$, $\left|e_{f}(i)-e_{f}(-i)\right| \leq 1$ for each i with $1 \leq i \leq k$. In this paper we investigate H_{k} - cordial labeling of H-graph, $K_{3, m}$ graph , $\boldsymbol{T}_{n} \odot K_{1}, L_{n, 1}=P_{n} \times P_{2}$ graph, $\boldsymbol{H} \odot K_{1}, K_{3, m} \odot K_{1}$, $\boldsymbol{L}_{\boldsymbol{n}, \mathbf{1}} \odot \boldsymbol{K}_{\mathbf{1}}$.

Keywords: - \boldsymbol{H}-cordial labeling, H_{k} - cordial labeling, H-graph, Kite graph, Ladder graph, Comb graph, Crown, $\mathbf{T}_{n} \odot K_{1}, \boldsymbol{H} \odot K_{1}, K_{3, m} \odot K_{1}, \boldsymbol{L}_{n, 1} \odot K_{1}$.

1. INTRODUCTION

In this paper we consider only finite, simple and undirected graph $G=(V, E)$ where E is a set of edges of G and V is a set of vertices of G. We represent edge as $e=u v$, where $u, v \in$ V. Most graph labeling methods trace their origin to one introduced by Rosa [1], or one given by Graham and Sloane [11]. Several types of graph labeling have been investigated both from a purely combinatorial perspective as well as from an application point of view. A detailed survey of various graph labeling is explained in Gallian[5]. The concept of cordial labeling and H - cordial labeling was introduced by I. Cahit [4].D.Parmar and J.Joshi [3] prove that a triangular snake graph T_{n} is $H-$ cordial if n is even and H_{3} - cordial if n is odd.
Definition 1.1 Let $G=(V, E)$ be a graph. A mapping $f: E \rightarrow\{1,-1\}$ is called H-cordial, if there exists a positive constant k, such that for each vertex $v,|f(v)|=k$ with vertex labeling $f(v)=\sum_{e \in I(v)} f(e)$, where $I(v)$ is the set of all edges incident to vertex v and the following two conditions are satisfied $\left|e_{f}(1)-e_{f}(-1)\right| \leq 1$ and $\left|v_{f}(k)-v_{f}(-k)\right| \leq 1$. A graph admits H - cordial labeling is called H - cordial graph. Following lemma gives important relation between vertex labeling and edge labeling. [9]

Lemma 1.2 If f is assignment of integer numbers to the vertices and edges of graph G such that for each vertex v, labeling $f(v)=\sum_{e \in I(v)} f(e)$, where $I(v)$ is the set of all edges incident to vertex v then $\sum_{v \in V(G)} f(v)=2 \sum_{e \in E(G)} f(e)$.[9]

Definition 1.3 An assignment f of integer labels to the edges of a graph is called $H_{k}-$ cordial labeling, if for each edge e and each vertex v of graph we have $1 \leq|f(e)| \leq k$ and
$1 \leq|f(v)| \leq k$ with vertex labeling $f(v)=\sum_{e \in I(v)} f(e)$, where $I(v)$ is the set of all edges incident to vertex v and for each i with $1 \leq i \leq k$ we have $\left|e_{f}(\mathrm{i})-e_{f}(-\mathrm{i})\right| \leq 1$ and $\left|v_{f}(i)-v_{f}(-i)\right| \leq 1$. A graph is called $H_{k}-$ cordial if it admits a H_{k} - cordial labeling.[9]

It is clear from definition that if graph admits H - cordial labeling then it is $H_{k}-$ cordial labeling graph. Also if graph is H_{k} - cordial then it is H_{k+1} - cordial labeling, but converse is not true. [7]
Definition 1.4 A Triangular Snake Graph T_{n} is obtained from a path $u_{1}, u_{2}, \ldots ., u_{n}$ by joining u_{i} and u_{i+1} to a new vertex v_{i} for $1 \leq i \leq n$. that is every edge of a path is replaced by a triangle. [7][3]
Definition 1.5 Let G and H be two graphs with $|V(G)|=n,|V(H)|=m$, corona product of G and H is the graph obtained by taking n copies of H and attaching each such copy of H to every vertex of G. It is denoted by $G \odot H$.[2]
Definition 1.6 The H-graph of path P_{n} is the graph obtained from two copies of P_{n} with vertices $u_{1}, u_{2}, \ldots \ldots . u_{n}$ and $v_{1}, v_{2}, \ldots \ldots . v_{n}$ by joining the vertices $u_{\frac{n+1}{2}}$ and $v_{\frac{n+1}{2}}$ by an edge if n is odd and the vertices $u_{\frac{n}{2}}$ and $v_{\frac{n}{2}+1}$ if n is even. [14]
Definition 1.7 A kite graph is obtained by attaching a path of length m with cycle of length n and it is denoted by $K_{n, m}$. It is also known as Dragon graph OR Canoe paddle graph. [2]
Definition 1.8 The ladder graph is obtained by $P_{n} \times P_{2}$. It is denoted by $L_{n, 1}$. [10]
Definition 1.9 A circular ladder graph is defined as the Cartesian product $C_{n} \times K_{2}$ where K_{2} is the complete graph on two vertices and C_{n} is the cycle graph with n vertices.[8]

2. MAIN RESULT

Theorem 2.1 The graph $T_{n} \odot K_{1}$ is $H-$ cordial if $n \geq 4$ is even.
Proof: Let P_{n} be the path $u_{1}, u_{2}, \ldots, u_{n}$. We can obtain triangular snake graph from path $u_{1}, u_{2}, \ldots . u_{n}$ by joining u_{i} and u_{i+1} to a new vertex v_{i} for $1 \leq i<n$. The graph $T_{n} \odot K_{1}$ is obtained by adding edge to each vertex. Hence, we have new vertex v_{i}^{\prime} for $1 \leq i<n$ and $u^{\prime}{ }_{i}$ for $1 \leq i \leq n$ and edges $v_{i} v^{\prime}{ }_{i}, u_{i} u^{\prime}{ }_{i}$. Let $V=\left\{u_{i}, u_{i}{ }_{i}, v_{j}, v_{j}^{\prime}: 1 \leq i \leq n, 1 \leq j<n-1\right\}$ and $E=\left\{u_{i} u_{i+1}, u_{i} u_{i}^{\prime}, u_{i} v_{i}, v_{i} u_{i+1}, v_{i} v_{i}^{\prime}: 1 \leq i \leq n-1\right\}$ be a vertex and edge set of graph $T_{n} \odot K_{1}$.
Consider a function $f: E \rightarrow\{-1,1\}$ defined as
$f\left(u_{i}, v_{i}\right)=f\left(u_{i+1}, v_{i}\right)=\left\{\begin{array}{cl}1 & ; 1 \leq i \leq \frac{n}{2} \\ -1 & ; \frac{n}{2}+1 \leq i \leq n-1\end{array}\right.$
$f\left(u_{i} u_{i}^{\prime}\right)=\left\{\begin{array}{cl}1 & ; 1 \leq i \leq \frac{n}{2} \\ -1 & ; \frac{n}{2}+1 \leq i \leq n\end{array}\right.$
$f\left(u_{i} u_{i+1}\right)=f\left(v_{i} v_{i}^{\prime}\right)= \begin{cases}-1 & ; 1 \leq i \leq \frac{n}{2} \\ 1 & ; \frac{n}{2}+1 \leq i \leq n-1\end{cases}$

$n \geq 4$	Edge Condition	Vertex Condition

n is even	$e_{f}(1)=\frac{5 n-4}{2}=e_{f}(-1)$	$v_{f}(1)=2 n-1=v_{f}(-1)$

In each case, the graph satisfies the condition $\left|e_{f}(\mathrm{i})-e_{f}(-\mathrm{i})\right| \leq 1$ and $\left|v_{f}(i)-v_{f}(-i)\right| \leq$ 1.

Hence, $T_{n} \odot K_{1}$ is $H-$ cordial if n is even.
Example $2.2 T_{6} \odot K_{1}$ is $H-$ cordial shown in Figure 1.

Figure 1: $T_{6} \odot K_{1}$
Theorem 2.3 The graph $T_{n} \odot K_{1}$ is H_{3} - cordial.
Proof: Let P_{n} be the path $u_{1}, u_{2}, \ldots, u_{n}$. We can obtain triangular snake graph from path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to a new vertex v_{i} for $1 \leq i<n$. Let $V=$ $\left\{u_{i}, u_{i}^{\prime}, v_{j}, v_{j}^{\prime}: 1 \leq i \leq n, 1 \leq j<n-1\right\}$ and $E=\left\{u_{i} u_{i+1}, u_{i} u_{i}^{\prime}, u_{i} v_{i}, v_{i} u_{i+1}, v_{i} v_{i}^{\prime}: 1 \leq\right.$ $i \leq n-1\}$ be a vertex and edge set of graph $T_{n} \odot K_{1}$.
Case 1 : If n is even then by Theorem $2.1 T_{n} \odot K_{1}$ is H-cordial. Therefore it is H_{2} - cordial.
Hence it is H_{3} - cordial.
Case 2 : If n is odd, then
Consider a function $f: E \rightarrow\{-1,1\}$ defined as
$f\left(u_{i} u_{i+1}\right)=f\left(u_{i}, v_{i}\right)=f\left(u_{i+1}, v_{i}\right)=(-1)^{i+1} ; 1 \leq i \leq n-1$
$f\left(u_{i} u_{i}^{\prime}\right)=f\left(v_{i} v_{i}^{\prime}\right)=(-1)^{i}$

$n \geq 3$	Edge Condition	Vertex Condition
n is odd	$e_{f}(1)=\frac{5 n-5}{2}, e_{f}(-1) \frac{5 n-3}{2}$	$v_{f}(1)=2 n-1, v_{f}(-1)=2 n-2$ $v_{f}(3)=0, v_{f}(-3)=1$

Hence, $T_{n} \odot K_{1}$ is H_{3} - cordial
Example 2.4 $T_{5} \odot K_{1}$ is H_{3} - cordial shown in Figure 2.

Figure 2: $\mathrm{T}_{5} \odot \mathrm{~K}_{1}$
Theorem 2.5 The H-graph of path P_{n} is H_{3}-cordial.
Proof: Let H graph of path P_{n} with vertices $u_{1}, u_{2}, \ldots \ldots . . u_{n}$ and $v_{1}, v_{2}, \ldots \ldots . v_{n}$ by joining the vertices $u_{\frac{n+1}{2}}$ and $v_{\frac{n+1}{2}}$ by an edge if n is odd and the vertices $u_{\frac{n}{2}}$ and $v_{\frac{n}{2}+1}$ if n is even. Let $E=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{\left[\frac{n+1}{2}\right]}, v_{\left[\frac{n+1}{2}\right]}: 1 \leq i \leq n-1\right\}$ be an edge set of $H-$ graph.
Consider a function $f: E \rightarrow\{-1,1\}$ defined as
$f\left(u_{i} u_{i+1}\right)=1 ; 1 \leq i \leq n-1$,
$f\left(v_{i} v_{i+1}\right)=-1 ; 1 \leq i \leq n-1$,
$f\left(u_{\left[\frac{n+1}{2}\right]} v_{\left[\frac{n+1}{2}\right]}\right)=1$.

n	Edge Condition	Vertex Condition
$n \geq 3$	$e_{f}(1)=n$	$v_{f}(1)=2, v_{f}(-1)=3$
	$e_{f}(-1)=n-1$	$v_{f}(2)=n-3=v_{f}(-2)$
		$v_{f}(3)=1, v_{f}(-3)=0$

In each case, the graph satisfies the condition $\left|e_{f}(\mathrm{i})-e_{f}(-\mathrm{i})\right| \leq 1$ and $\left|v_{f}(i)-v_{f}(-i)\right| \leq$ 1.

Hence, H-graph of path P_{n} is H_{3} - cordial
Example 2.6 H-graph of path P_{6} is H_{3} - cordial shown in Figure 3.

Figure 3: H-graph of path P_{6}

Theorem 2.7 The $H \odot K_{1}$ graph of path P_{n} is H_{3}-cordial.
Proof: Let H-graph of path P_{n} with vertices $u_{1}, u_{2}, \ldots \ldots . u_{n}$ and $v_{1}, v_{2}, \ldots \ldots . v_{n}$ by joining the vertices $\frac{u_{\frac{n+1}{2}}}{}$ and $v_{\frac{n+1}{2}}$ by an edge if n is odd and the vertices $u_{\frac{n}{2}}$ and $v_{\frac{n}{2}+1}$ If n is even. $u_{1}, u_{2}, \ldots \ldots . u_{n}, v_{1}, v_{2}, \ldots \ldots . v_{n}$ are join by edge to the vertices $u_{1}^{\prime}, u^{\prime}{ }_{2}, \ldots \ldots . . u_{n}^{\prime}$, $v_{1}^{\prime}, v^{\prime}{ }_{2}, \ldots \ldots . v_{n}^{\prime}$ respectively. Let $E=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} u^{\prime}, v_{i} v^{\prime}{ }_{i}, u_{\left[\frac{n+1}{2}\right]} v_{\left[\frac{n+1}{2}\right]}: 1 \leq\right.$ $i \leq n-1\}$ be an edge set of $H \odot K_{1}$ graph.
Consider a function $f: E \rightarrow\{-2,-1,1,2\}$ defined as
$f\left(u_{i} u_{i+1}\right)=1 ; 1 \leq i \leq n-1$
$f\left(v_{i} v_{i+1}\right)=-1 ; 1 \leq i \leq n-1$
$f\left(u_{i}, u^{\prime}{ }_{i}\right)=\left\{\begin{array}{cc}1 & ; \text { if } i=1, n \\ -1 & ; \text { Otherwise }\end{array}\right.$
$f\left(v_{i}, v_{i}^{\prime}\right)=\left\{\begin{array}{cl}-1 & ; \text { if } i=1, n \\ 1 & ; \text { Otherwise }\end{array}\right.$
$f\left(u_{\left[\frac{n+1}{2}\right]} v_{\left[\frac{n+1}{2}\right]}\right)=2$.

n	Edge Condition	Vertex Condition
$n \geq 3$	$e_{f}(1)=2 n-1=e_{f}(-1)$	$v_{f}(1)=2 n-2, v_{f}(-1)=2 n-3$
	$e_{f}(2)=1, e_{f}(-2)=0$	$v_{f}(2)=2=v_{f}(-2)$
		$v_{f}(3)=1, v_{f}(-3)=0$

Hence, $H \odot K_{1}$ graph of path P_{n} is H_{3} - cordial.
Example 2.8 $H \odot K_{1}$ graph of path P_{5} is H_{3} - cordial shown in Figure 4.

Figure 4: $H \odot K_{1}$ graph of path P_{5}
Theorem 2.9 Kite graph $K_{3, m}$ is H_{3}-cordial.
Proof: Kite graph $K_{3, m}$ is obtained by attaching a path of length m with C_{3}. Let $u_{1}, u_{2}, \ldots \ldots u_{m+3}$ are vertices of graph and u_{1}, u_{2}, u_{3} form a cycle C_{3}. Let u_{3} be a common vertex of a cycle C_{3} and path of length m. Let $E=\left\{u_{1} u_{3}, u_{i} u_{i+1}: 1 \leq i \leq m+3\right\}$ be an edge set of kite graph $K_{3, m}$.

Consider a function $f: E \rightarrow\{-2,-1,1,2\}$ defined as

Vol 12, Issue 02, 2021

Case 1 If $m=1$, then
$f\left(u_{1} u_{2}\right)=2, f\left(u_{1} u_{3}\right)=-1, f\left(u_{2} u_{3}\right)=1$,
$f\left(u_{3} u_{4}\right)=-1$.
Case 2 If $m=2$, then
$f\left(u_{1} u_{2}\right)=2, f\left(u_{1} u_{3}\right)=-1, f\left(u_{2} u_{3}\right)=1$,
$f\left(u_{3} u_{4}\right)=-2, f\left(u_{4} u_{5}\right)=-1$.
Case 3 If $m \geq 3$, then
$f\left(u_{1} u_{2}\right)=2, f\left(u_{1} u_{3}\right)=-1$,
$f\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{c}1 ; 2 \leq i \leq\left\lfloor\frac{m+3}{2}\right\rfloor \\ -2 ; i=\left\lfloor\frac{m+3}{2}\right\rfloor+1 \\ -1 ;\left\lfloor\frac{m+3}{2}\right\rfloor+2 \leq i \leq m+2\end{array}\right.$

m	Edge Condition	Vertex Condition
$m=1$	$e_{f}(1)=1, e_{f}(-1)=2$	$v_{f}(1)=1, v_{f}(-1)=2$
	$e_{f}(2)=1, e_{f}(-2)=0$	$v_{f}(3)=1, v_{f}(-3)=0$
$m=2$	$e_{f}(1)=1, e_{f}(-1)=2$	$v_{f}(1)=1, v_{f}(-1)=1$
	$e_{f}(2)=1, e_{f}(-2)=1$	$v_{f}(2)=0, v_{f}(-2)=1$
		$v_{f}(3)=1, v_{f}(-3)=1$
m is odd	$e_{f}(1)=\frac{m+1}{2}=e_{f}(-1)$	$v_{f}(1)=2=v_{f}(-1)$
	$e_{f}(2)=1, e_{f}(-2)=1$	$v_{f}(2)=\frac{m-3}{2}=v_{f}(-2)$
		$v_{f}(3)=1=v_{f}(-3)$
m is even	$e_{f}(1)=\frac{m}{2}, e_{f}(-1)=\frac{m+2}{2}$	$v_{f}(1)=2=v_{f}(-1)$
	$e_{f}(2)=1, e_{f}(-2)=1$	$v_{f}(2)=\frac{m-4}{2}, v_{f}(-2)=\frac{m-2}{2}$
		$v_{f}(3)=1=v_{f}(-3)$

Hence, $K_{3, m}$ Graph is H_{3} - cordial.
Example 2.10 $\mathrm{K}_{3,5}$ Graph is H_{3} - cordial shown in Figure 5.

Figure 5: $\mathrm{K}_{3,5}$

Theorem 2.11 The graph $K_{3, m} \odot K_{1}$ is H_{2}-cordial.
Proof: A graph $K_{3, m} \odot K_{1}$ is obtained by attaching an edge to each vertex of graph $K_{3, m}$. Let $u_{1}, u_{2}, \ldots \ldots u_{m+3}$ are vertices of graph $K_{3, m}$. Hence new vertices are $u_{1}^{\prime}, u^{\prime}{ }_{2}, \ldots, u^{\prime}{ }_{m+3}$ and edges $u_{i} u_{i}^{\prime}, 1 \leq i \leq m+3$. let u_{3} be a common vertex of a cycle C_{3} and path of length m. Let $E=\left\{u_{1} u_{3}, u_{i} u_{i+1}, u_{i} u_{i}{ }_{i}: 1 \leq i \leq m+3\right\}$ be an edge set of kite graph $K_{3, m} \odot K_{1}$.

Consider a function $f: E \rightarrow\{-1,1\}$ defined as
$f\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{cl}-1 & ; 3 \leq i \leq m+2 \\ 1 & ; \text { otherwise }\end{array}\right.$
$f\left(u_{i} u_{i}^{\prime}\right)=\left\{\begin{array}{cl}1 & ; 3 \leq i \leq m+2 \\ -1 & ; \text { otherwise }\end{array}\right.$

m	Edge Condition	Vertex Condition
$m \geq 1$	$e_{f}(1)=m+3=e_{f}(-1)$	$v_{f}(1)=m+2=v_{f}(-1)$
	$v_{f}(2)=1=v_{f}(-2)$	

Hence, $K_{3, m} \odot K_{1}$ Graph is H_{2} - cordial.
Example $2.12 K_{3,4} \odot K_{1}$ Graph is H_{2} - cordial shown in Figure 6.

Figure 6: $K_{3,4} \odot K_{1}$
Theorem 2.13 Ladder graph $L_{n, 1}(n \geq 4)$ is H_{2}-cordial if n is even.
Proof: Let $V=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq\right.$ $i \leq n\}$ are vertex and edge set of ladder graph $L_{n, 1}$.
Consider a function $f: E \rightarrow\{-1,1\}$ defined as
$f\left(u_{i} u_{i+1}\right)=f\left(v_{i} v_{i+1}\right)= \begin{cases}1 & ; 1 \leq i \leq \frac{n}{2} \\ -1 & ; \frac{n}{2} \leq i \leq n-1\end{cases}$
$f\left(u_{1} v_{1}\right)=1, f\left(u_{n} v_{n}\right)=-1$
$f\left(u_{i} v_{i}\right)= \begin{cases}-1 & ; 2 \leq i \leq \frac{n}{2}+1 \\ 1 & ; \frac{n}{2}+2 \leq i \leq n-1\end{cases}$

n	Edge Condition	Vertex Condition
n is even	$e_{f}(1)=\frac{3 n-2}{2}=e_{f}(-1)$	$v_{f}(1)=n-2=v_{f}(-1)$ $v_{f}(2)=2=v_{f}(-2)$

Hence, $L_{n, 1}$ Graph is H_{2} - cordial if n is even.
Example 2.14 $L_{4,1}$ Graph is H_{2} - cordial shown in Figure 7.

Figure 7: $L_{4,1}$
Theorem 2.15 Ladder graph $L_{n, 1}$ is H_{3}-cordial.
Proof: Let $V=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq\right.$ $i \leq n\}$ are vertex and edge set of ladder graph $L_{n, 1}$.
Case 1: If n is even then by Theorem $2.13 L_{n, 1}$ is H_{2} - cordial. Therefore it is H_{3} - cordial.
Case 2: If $n=2$, then
Consider a function $f: E \rightarrow\{-2,-1,1,2\}$ defined as
$f\left(u_{1} v_{1}\right)=2$,
$f\left(u_{2} v_{2}\right)=-2$,
$f\left(u_{1} u_{2}\right)=1$,
$f\left(v_{1} v_{2}\right)=-1$.
Case 3: If $n=3$, then
Consider a function $f: E \rightarrow\{-2,-1,1,2\}$ defined as
$f\left(u_{1} v_{1}\right)=2$,
$f\left(u_{2} v_{2}\right)=1$,
$f\left(u_{3} v_{3}\right)=-2$,
$f\left(u_{i} u_{i+1}\right)=1 ; i=1,2$,
$f\left(v_{i} v_{i+1}\right)=-1 ; i=1,2$.
Case 4: If $n \geq 5$,then
Consider a function $f: E \rightarrow\{-1,1\}$ defined as
$f\left(u_{i} u_{i+1}\right)= \begin{cases}1 & ; 1 \leq i \leq \frac{n-3}{2} \\ -1 & ; \frac{n-1}{2} \leq i \leq n-1\end{cases}$
$f\left(v_{i} v_{i+1}\right)= \begin{cases}1 & ; 1 \leq i \leq \frac{n+1}{2} \\ -1 & ; \frac{n+3}{2} \leq i \leq n-1\end{cases}$
$f\left(u_{1} v_{1}\right)=1$,
$f\left(u_{n} v_{n}\right)=-1$,
$f\left(u_{i} v_{i}\right)= \begin{cases}-1 & ; 2 \leq i \leq \frac{n+1}{2} \\ 1 & ; \frac{n+3}{2} \leq i \leq n-1\end{cases}$

n	Edge Condition	Vertex Condition
$n=2$	$e_{f}(1)=1=e_{f}(-1)$	$v_{f}(1)=1=v_{f}(-1)$

	$e_{f}(2)=1=e_{f}(-2)$	$v_{f}(3)=1=v_{f}(-3)$
$n=3$	$e_{f}(1)=3, e_{f}(-1)=2$	$v_{f}(1)=1, v_{f}(-1)=2$
	$e_{f}(2)=1=e_{f}(-2)$	$v_{f}(3)=2, v_{f}(-3)=1$
n is odd	$e_{f}(1)=\frac{3 n-3}{2}, e_{f}(-1)=\frac{3 n-1}{2}$	$v_{f}(1)=n-2, v_{f}(-1)=n-3$
		$v_{f}(2)=2=v_{f}(-2)$
		$v_{f}(3)=0, v_{f}(-3)=1$

In each case, the graph satisfies the condition $\left|e_{f}(\mathrm{i})-e_{f}(-\mathrm{i})\right| \leq 1$ and $\left|v_{f}(i)-v_{f}(-i)\right| \leq$ 1.

Hence, $L_{n, 1}$ Graph is H_{3} - cordial.
Example 2.16 $L_{5,1}$ Graph is H_{3} - cordial shown in Figure 8.

Figure 8: $L_{5,1}$
Theorem 2.17 The graph $L_{n, 1} \odot K_{1}$ is H_{3}-cordial.
Proof Let $V=\left\{u_{i}, v_{i}, u^{\prime}{ }_{i}, v_{i}^{\prime}: 1 \leq i \leq n\right\}$ and $E=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, 1 \leq i \leq n-1\right\} \cup$ $\left\{u_{i} v_{i}, u_{i} u_{i}^{\prime}, v_{i} v_{i}^{\prime}: 1 \leq i \leq n\right\}$ are vertex and edge set of ladder graph $L_{n, 1} \odot K_{1}$.
Consider a function $f: E \rightarrow\{-2,-1,1,2\}$ defined as
$f\left(u_{1} v_{1}\right)=1, f\left(u_{n} v_{n}\right)=-1, f\left(u_{i} v_{i}\right)=(-1)^{i} 2 ; 2 \leq i \leq n-1$
$f\left(u_{i} u_{i+1}\right)=1 ; 1 \leq i \leq n-1$
$f\left(v_{i} v_{i+1}\right)=-1 ; 1 \leq i \leq n-1$
$f\left(u_{i} u^{\prime}{ }_{i}\right)=-1 ; 1 \leq i \leq n$
$f\left(v_{i} v_{i}^{\prime}\right)=1 ; 1 \leq i \leq n$

$n \geq 2$	Edge Condition	Vertex Condition
n is even	$e_{f}(1)=2 n=e_{f}(-1)$	$v_{f}(1)=\frac{3 n+2}{2}=v_{f}(-1)$
	$e_{f}(2)=\frac{n-2}{2}=e_{f}(-2)$	$v_{f}(3)=\frac{n-2}{2}=v_{f}(-3)$
n is odd	$e_{f}(1)=2 n=e_{f}(-1)$ $e_{f}(2)=\frac{n-1}{2}, e_{f}(-2)=\frac{n-3}{2}$	$v_{f}(1)=\frac{3 n+3}{2}, v_{f}(-1)=\frac{3 n+1}{2}$ $v_{f}(3)=\frac{n-1}{2}, v_{f}(-3)=\frac{n-3}{2}$

Hence, $L_{n, 1} \odot K_{1}$ Graph is H_{3} - cordial.
Example $2.18 L_{5,1} \odot K_{1}$ Graph is $H_{3}-$ cordial shown in Figure 9.

Figure $9: L_{5,1} \odot K_{1}$
Theorem 2.19 Comb ($P_{n} \odot K_{1}$) ($n \geq 2$) is H_{3} - cordial.
Proof: Let P_{n} be the path $u_{1}, u_{2}, \ldots, u_{n}$. The graph $P_{n} \odot K_{1}$ is obtained by adding edge to each vertex .Let $V=\left\{u_{i}, u_{i}^{\prime}: 1 \leq i \leq n\right\}$ and $E=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} u_{i}^{\prime}: 1 \leq\right.$ $i \leq n\}$ are vertex and edge set of graph $P_{n} \odot K_{1}$.

Consider a function $f: E \rightarrow\{-2,-1,1,2\}$ defined as
$f\left(u_{i} u_{i+1}\right)=(-1)^{i+1} .2 ; 1 \leq i \leq n-1$
$f\left(u_{i} u_{i}^{\prime}\right)=(-1)^{i} ; 1 \leq i \leq n$

$n \geq 2$	Edge Condition	Vertex Condition
n is even	$e_{f}(1)=\frac{n}{2}=e_{f}(-1)$	$v_{f}(1)=n, v_{f}(-1)=n-1$
	$e_{f}(2)=\frac{n}{2}, e_{f}(-2)=\frac{n-2}{2}$	
n is odd	$e_{f}(1)=\frac{n-1}{2}, e_{f}(-1)=\frac{n+1}{2}$	$v_{f}(1)=n, v_{f}(-3)=0$ $v_{f}(3)=0, v_{f}(-3)=1$
	$e_{f}(2)=\frac{n-1}{2}=e_{f}(-2)$	

Hence, $P_{n} \odot K_{1}$ is H_{3} - cordial.
Example $2.20 P_{6} \odot K_{1}$ is H_{3} - cordial shown in Figure 10.

Figure 10: $P_{6} \odot K_{1}$
Theorem 2.21 The $P_{n} \odot m K_{1}$ is $H_{3}-\operatorname{cordial}(n \geq 3)$.
Proof: Let P_{n} be a cycle with vertices $u_{1}, u_{2}, \ldots u_{n} . P_{n} \odot m K_{1}$ is obtained from path P_{n} by attaching m - pendant edge to each vertex. Let $V=\left\{u_{i}, u_{i j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and $E=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} u_{i j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$ are vertex and edge set of graph $P_{n} \odot m K_{1}$.
Consider a function $f: E \longrightarrow\{-2,-1,1,2\}$ defined as
Case 1: If m is even, then

Vol 12, Issue 02, 2021
$f\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{cl}1 & ; 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-1 \\ 2 & ; i=\left\lceil\frac{n}{2}\right\rceil \\ -1 & ; \text { Otherwise }\end{array}\right.$
$f\left(u_{i} u_{i j}\right)=(-1)^{j} ; 1 \leq i \leq n, 1 \leq j \leq m$.

$m, n \geq 3$	Edge Condition	Vertex Condition
m is even	$e_{f}(1)=\frac{n(m+1)-2}{2}=e_{f}(-1)$	$v_{f}(1)=\frac{m n+4}{2}, v_{f}(-1)=\frac{m n+2}{2}$
	$e_{f}(2)=1, e_{f}(-1)=0$	$v_{f}(2)=\frac{n-4}{2}=v_{f}(-2)$
		$v_{f}(3)=1, v_{f}(-3)=0$

Case 2: If m is odd, then
$f\left(u_{i} u_{i+1}\right)=(-1)^{i+1} .2 ; 1 \leq i \leq n-1$
$f\left(u_{i} u_{i 1}\right)=(-1)^{i} ; 1 \leq i \leq n$
$f\left(u_{i} u_{i j}\right)=(-1)^{j} ; 1 \leq i \leq n, 2 \leq j \leq m$.

$n \geq 3, m$ is odd	Edge Condition	Vertex Condition
n is even	$e_{f}(1)=\frac{m n}{2}=e_{f}(-1)$	$v_{f}(1)=\frac{(m+1) n}{2}$,
	$e_{f}(2)=\frac{n}{2}, e_{f}(-2)=\frac{n-2}{2}$	$v_{f}(-1)=\frac{(m+1) n-2}{2}$ $v_{f}(3)=1, v_{f}(-3)=0$
n is odd	$e_{f}(1)=\frac{m n-1}{2}, e_{f}(-1)$	
$=\frac{m n+1}{2}$	$v_{f}(1)=\frac{(m+1) n}{2}$,	
	$e_{f}(2)=\frac{n-1}{2}=e_{f}(-2)$	$v_{f}(-1)=\frac{(m+1) n-2}{2}$ $v_{f}(3)=0, v_{f}(-3)=1$

Hence, $P_{n} \odot m K_{1}$ is H_{3} - cordial.
Example 2.22 $P_{4} \odot 4 K_{1}$ is H_{3}-cordial shown in Figure 11.

Figure 11: $P_{4} \odot 4 K_{1}$
Theorem 2.23 Crown $C_{n} \odot K_{1}$ is H - cordial.
Proof: Let C_{n} be a cycle with vertices $u_{1}, u_{2}, \ldots u_{n}$ with $u_{n+1}=u_{1} . C_{n} \odot K_{1}$ is obtained from cycle C_{n} by attaching pendant edge to each vertex. Let $V=\left\{u_{i}, u_{i}^{\prime}: 1 \leq i \leq n\right\}$ and $E=\left\{u_{i} u_{i+1}, u_{i} u_{i}^{\prime}: 1 \leq i \leq n, u_{n+1}=u_{1}\right\} \quad$ are vertex and edge set of graph $C_{n} \odot K_{1}$.
Consider a function $f: E \rightarrow\{-1,1\}$ defined as
$f\left(u_{i} u_{i+1}\right)=1 ; 1 \leq i \leq n$
$f\left(u_{i} u_{i}^{\prime}\right)=-1 ; 1 \leq i \leq n$

$n \geq 3$	Edge Condition	Vertex Condition
n	$e_{f}(1)=n=e_{f}(-1)$	$v_{f}(1)=n=v_{f}(-1)$

Hence, $C_{n} \odot K_{1}$ is H - cordial.
Example $2.24 C_{5} \odot K_{1}$ is H-cordial shown in Figure 12.

Figure 12: $C_{5} \odot K_{1}$
Theorem 2.25 The $C_{n} \odot m K_{1}$ is H - cordial if m is odd ($n \geq 3$).
Proof: Let C_{n} be a cycle with vertices $u_{1}, u_{2}, \ldots u_{n}$ with $u_{n+1}=u_{1} . C_{n} \odot m K_{1}$ is obtained from cycle C_{n} by attaching m - pendant edge to each vertex. Let $V=\left\{u_{i}, u_{i j}: 1 \leq i \leq\right.$ $n, 1 \leq j \leq m\}$ and $E=\left\{u_{i} u_{i+1}, u_{i} u_{i j}: 1 \leq i \leq n, 1 \leq j \leq m, u_{n+1}=u_{1}\right\}$ are vertex and edge set of graph $C_{n} \odot m K_{1}$.
Consider a function $f: E \rightarrow\{-1,1\}$ defined as
$f\left(u_{i} u_{i+1}\right)=1 ; 1 \leq i \leq n$
$f\left(u_{i} u_{i 1}\right)=-1 ; 1 \leq i \leq n$
$f\left(u_{i} u_{i j}\right)=(-1)^{j} ; 1 \leq i \leq n, 2 \leq j \leq m$.

m	Edge Condition	Vertex Condition
m is odd	$e_{f}(1)=\frac{n(m+1)}{2}=e_{f}(-1)$	$v_{f}(1)=\frac{n(m+1)}{2}=v_{f}(-1)$

Hence, $C_{n} \odot m K_{1}$ is $H-$ cordial.
Example 2.26 $C_{5} \odot 3 K_{1}$ is H-cordial shown in Figure 13.

Figure 13: $C_{5} \odot 3 K_{1}$
Theorem 2.27 The $C_{n} \odot m K_{1}$ is H_{3} - cordial if m is even $(n \geq 4)$.
Proof: Let C_{n} be a cycle with vertices $u_{1}, u_{2}, \ldots u_{n}$ with $u_{n+1}=u_{1} . C_{n} \odot m K_{1}$ is obtained from cycle C_{n} by attaching m - pendant edge to each vertex. Let $V=\left\{u_{i}, u_{i j}: 1 \leq i \leq\right.$ $n, 1 \leq j \leq m\}$ and $E=\left\{u_{i} u_{i+1}, u_{i} u_{i j}: 1 \leq i \leq n, 1 \leq j \leq m, u_{n+1}=u_{1}\right\}$ are vertex and edge set of graph $C_{n} \odot m K_{1}$.
Consider a function $f: E \rightarrow\{-2,-1,1,2\}$ defined as
$f\left(u_{i} u_{i+1}\right)= \begin{cases}1 & ; 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-1 \\ 2 & ; i=\left\lceil\frac{n}{2}\right\rceil \\ -1 & ;\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n-1\end{cases}$
$f\left(u_{n} u_{1}\right)=-2$,
$f\left(u_{i} u_{i j}\right)=(-1)^{j} ; 1 \leq i \leq n, 1 \leq j \leq m$.

m is even	Edge Condition	Vertex Condition
n is odd	$e_{f}(1)=\frac{n(m+1)-1}{2}$,	$v_{f}(1)=\frac{n m+2}{2}=v_{f}(-1)$
	$e_{f}(-1)=\frac{n(m+1)-3}{2}$	$v_{f}(2)=\frac{n-3}{2}, v_{f}(-2)=\frac{n-5}{2}$
	$e_{f}(2)=1=e_{f}(-2)$	$v_{f}(3)=1=v_{f}(-3)$
n is even	$e_{f}(1)=\frac{n(m+1)-2}{2}=e_{f}(-1)$	$v_{f}(1)=\frac{n m+2}{2}=v_{f}(-1)$
	$e_{f}(2)=1=e_{f}(-2)$	$v_{f}(2)=\frac{n-4}{2}=v_{f}(-2)$
		$v_{f}(3)=1=v_{f}(-3)$

Hence, $C_{n} \odot m K_{1}$ is H_{3} - cordial.
Example $2.28 C_{4} \odot 4 K_{1}$ is H_{3} - cordial shown in Figure 14.

Figure 14: $C_{4} \odot 4 K_{1}$
Theorem 2.29 Circular ladder graph $C L_{n}, n \geq 3$ is $H-$ cordial if n is even.
Proof: Let $=\left\{u_{i}, v_{i}, 1 \leq i \leq n\right\}$ and $E=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i}: 1 \leq i \leq n\right.$ with $u_{n+1}=$ $\left.u_{1}, v_{n+1}=v_{1}\right\}$ are vertex and edge set of graph $C L_{n}$.
Consider function $f: E \rightarrow\{-1,1\}$ defined as
$f\left(u_{i} u_{i+1}\right)=(-1)^{i+1} ; 1 \leq i \leq n$,
$f\left(v_{i} v_{i+1}\right)=(-1)^{i+1} ; 1 \leq i \leq n$,
$f\left(u_{i} v_{i}\right)=(-1)^{i+1} ; 1 \leq i \leq n$.

$n \geq 3$	Edge Condition	Vertex Condition
n is even	$e_{f}(1)=\frac{3 n}{2}=e_{f}(-1)$	$v_{f}(1)=n=v_{f}(-1)$

Hence, $C L_{n}$ is $H-$ cordial if n is even.
Example 2.30 $C L_{6}$ is H_{3} - cordial shown in Figure 15.

Figure 15: $C L_{6}$
Theorem 2.31 Circular ladder graph $C L_{n}, n \geq 3$ is H_{3} - cordial.
Proof: Let $=\left\{u_{i}, v_{i}, 1 \leq i \leq n\right\}$ and $E=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i}: 1 \leq i \leq n\right.$ with $u_{n+1}=$ $\left.u_{1}, v_{n+1}=v_{1}\right\}$ are vertex and edge set of graph $C L_{n}$.
Case 1: If n is even then it is H - cordial with $|f(v)|=1$. Therefore it is H_{2} - cordial and also H_{3} - cordial.
Case 2: If n is odd then
Consider function $f: E \rightarrow\{-1,1\}$ defined as
$f\left(u_{i} u_{i+1}\right)=1 ; 1 \leq i \leq n$,
$f\left(v_{i} v_{i+1}\right)=-1 ; 1 \leq i \leq n$,
$f\left(u_{i} v_{i}\right)=(-1)^{i+1} ; 1 \leq i \leq n$.

$n \geq 3$	Edge Condition	Vertex Condition
n is odd	$e_{f}(1)=\frac{3 n+1}{2}, e_{f}(-1)=\frac{3 n-1}{2}$	$v_{f}(1)=\frac{n-1}{2}, v_{f}(-1)=\frac{n+1}{2}$
$v_{f}(3)=\frac{n+1}{2}, v_{f}(-3)=\frac{n-1}{2}$		

Hence, $C L_{n}$ is H_{3} - cordial.
Example 2.32CL L_{5} is H_{3} - cordial shown in Figure 16.

Figure 16: $C L_{5}$

3. CONCLUSION

In this paper we have proved that H - graph, Kite graph, Ladder graph ,Comb, Crown and $T_{n} \odot K_{1}, H \odot K_{1}, K_{3, m} \odot K_{1}, L_{n, 1} \odot K_{1}$ graph are H_{K} - cordial labeling.

4. REFERENCES

[1] A. Rosa, "On certain valuations of the vertices of a graph", Theory of Graphs (Internat.Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967)349-355.
[2] B.Selvam, K.Anitha and K.Thirusangu, "Cordial and Product Cordial Labeling for the Extended Duplicate Graph of Kite Graph",International Journal of Mathematics And its Applications,(4)(3-B)(2016),61-68.
[3] D.Parmar and J.Joshi, " H_{k}-Cordial Labeling of Triangular Snake Graph",Journal of Applied Science and Computations.Vol VI,no III (2019),pp 2118-2123.
[4] I. Cahit, "H-cordial graphs", Bull. Inst. Combin. Appl., 18 (1996), pp. 87- 101.
[5] J A Gallian, "A dynamic survey of graph labeling", The Electronics Journal of Combinatorics, (2017) \#DS6.
[6] J.Gross and J.Yellen, "Graph Theory and its applications", CRC Press,Boca Raton,(1999).
[7] J.R.Joshi and D.Parmar, " H_{k}-cordial labeling of Some Sanke graphs",Journal of Xidian University,(14)(3)(2020),844-858
[8] Joice Punitha M, S. Rajakumari and Indra Rajasingh, "Skew Chromatic Index of Circular Ladder Graphs",Annals of Pure and Applied Mathematics,(8)(2)(2014),1-7.
[9] M. Ghebleh and R. Khoeilar, "A note on: "H-cordial graphs", Bull. Inst. Combin. Appl., 31 (2001) 60-68.
[10] M. I. Moussa and E.M. Badr, "Ladder and Subdivision of Ladder Graphs With Pendant Edges are Odd Graceful",International Journal on Applications of Graph Theory in Wireless Ad hoc Networks and Sensor Networks,(8)(1)(2016),1-8.
[11] R. L. Graham and N. J. A. Sloane, "On additive bases and harmonious graphs", SIAMJ. Alg. Discrete Methods,(1)(1980) 382-404.
[12] R. Vasuki, P. Sugirtha And J. Venkateswari, "Super Mean Labeling Of Some Subdivision Graphs", Kragujevac Journal Of Mathematics, Vol 41(2) (2017), Pages 179-201.
[13] S.Meena and M.Sivasakthi, "Harmonic Mean Labeling Of Subdivision Graphs", International Journal of Research and Analytical Reviews,(6)(1)(2019),196-204.
[14] U.Vaghela and D.Parmar, "Difference Pertfect Square Labeling of Some Graphs",Journal of Xidian University, Vol 14,Issue 2 (2020),pp 87-98.

