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Abstract: - A graph ¢ = (V,E) is called H;, — cordial if for each edge e and each vertex v
of G have the label 1 < |f(e)l <k, 1 < |[f(w)| <k and |v;(D) —vp(—-D| <1,
|ef(i) — ef(—i)| < 1foreach iwith1 <i < k. In this paper we investigate H; — cordial
labeling of H-graph , K3, graph, T,,©K,,L,,q; = P, X P, graph, H O K; ,K3,, O K,
v Ln1 O K.

Keywords: - H —cordial labeling, Hj — cordial labeling, H- graph, Kite graph, Ladder
graph, Comb graph, Crown, T,,0K,H O K, ,K3,, OK,, L,; O K;.

1. INTRODUCTION

In this paper we consider only finite, simple and undirected graph G = (V,E) where E is a
set of edges of G and V is a set of vertices of G. We represent edge as e = uv ,where u,v €
V. Most graph labeling methods trace their origin to one introduced by Rosa [1], or one given
by Graham and Sloane [11]. Several types of graph labeling have been investigated both from
a purely combinatorial perspective as well as from an application point of view. A detailed
survey of various graph labeling is explained in Gallian[5]. The concept of cordial labeling
and H — cordial labeling was introduced by I. Cahit [4].D.Parmar and J.Joshi [3] prove that a
triangular snake graph T,, is H — cordial if n isevenand H; — cordial if n is odd.

Definition 1.1 Let G = (V,E) be a graph. A mapping f: E — {1,—1}is called H-cordial, if
there exists a positive constant k, such that for each vertex v, |f (v)| = k with vertex
labeling f(v) = Xeerw) f(e) , where I(v) is the set of all edges incident to vertex v and the

following two conditions are satisfied |e;(1) — e;(—=1)| < 1 and |vs (k) —vs(—k)| < 1. A
graph admits H — cordial labeling is called H — cordial graph. Following lemma gives
important relation between vertex labeling and edge labeling. [9]

Lemma 1.2 If f is assignment of integer numbers to the vertices and edges of graph G such
that for each vertex v, labeling f(v) = Y.e;) f(e) , Where I(v) is the set of all edges

incident to vertex v then Y,y gy f (V) = 2 Yeer(s) f(€).[9]

Definition 1.3 An assignment f of integer labels to the edges of a graph is called H; —
cordial labeling, if for each edge e and each vertex v of graph we have 1 < |f(e)| < k and
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1< |f()| < k with vertex labeling f(v) = Yeeiw) f(€) , Where I(v) is the set of all
edges incident to vertex v and for each i with 1 < i < k we have |ef(i) — ef(—i)| <1and
|vf(i) - vf(—i)| < 1. Agraph is called H, — cordial if it admits a H, — cordial labeling.[9]

It is clear from definition that if graph admits H — cordial labeling then it is H;, —
cordial labeling graph. Also if graph is H, — cordial then it is H,,; — cordial labeling, but
converse is not true. [7]

Definition 1.4 A Triangular Snake Graph T,, is obtained from a path u,, u,, ...., u, by joining
u; and u;,4 to a new vertex v; for 1 <i < n.that is every edge of a path is replaced by a
triangle. [7][3]

Definition 1.5 Let G and H be two graphs with |V (G)| = n, |[V(H)| = m , corona product of
G and H is the graph obtained by taking n copies of H and attaching each such copy of H to
every vertex of G . It is denoted by G O H.[2]

Definition 1.6 The H-graph of path B, is the graph obtained from two copies of B, with
vertices uq, Uy, ... ... Uy aNd V4, Uy, ........ v, Dy joining the vertices un+1 and vn+1 by an

2

edge if n is odd and the vertices uz and ve, , ifniseven. [14]

Definition 1.7 A kite graph is obtamed by attachlng a path of length m with cycle of length n
and it is denoted by K;, ,,,. It is also known as Dragon graph OR Canoe paddle graph. [2]
Definition 1.8 The ladder graph is obtained by P, x P, .It is denoted by L,, ;. [10]

Definition 1.9 A circular ladder graph is defined as the Cartesian product C,, X K, where

K, is the complete graph on two vertices and C,, is the cycle graph with n vertices.[8]

2. MAIN RESULT

Theorem 2.1 The graph T,,©K; is H — cordial if n = 4 is even.

Proof: Let B, be the path u,, u,, ...., u,. We can obtain triangular snake graph from path

Uq, Uy, ..., Uy DY joining u; and u;, 4 to a new vertex v; for1 < i < n. The graph T,,®OK; is
obtained by adding edge to each vertex .Hence, we have new vertex v'; for1 <i <nand
u';for1 <i <nandedgesv;v';, uu';.LetV = {ui,u’i,vj,v'j: 1<i<nl<j<n-1}
and E = {wju;,q, wiu'y, wiv;, viuiq, viv';: 1 < i < n— 1} be a vertex and edge set of graph
T,OK; .

Consider a function f: E = {—1,1} defined as

1 1< '<Zn
1= l_.2

fQuivy) = fup,v) = n
-1 ;E+1SiSn—1

n
1 ;1< iSQE
fuu'y) = n
-1 ’E +1<i<n
n
-1 ;1< lSSE
fuiuiyy) = fvv'y) = n
1 ;=+1<i<n-1
n=4 | Edge Condition Vertex Condition
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niseven Sn—4 (1) =2n—1=v(—-1

In each case, the graph satisfies the condition |ef(i) - ef(—i)| <1land |vf(i) — vf(—i)| <
1.

Hence, T,,©K, is H — cordial if n is even.

Example 2.2 T¢,©K; is H — cordial shown in Figure 1.

1 1 1 -1 -1 -1
Figure 1: T¢OK;

Theorem 2.3 The graph T,,©K; is H; — cordial.
Proof: Let B, be the path u,, u,, ...., u,. We can obtain triangular snake graph from path
Uq, Uy, ..., Uy DY joining u; and u;,, toanew vertex v; forl <i<n.LetV =
{upv'yv;, Vil <i<nl<j<n—1}and E = {wup, witdy, wivy, v, vv' 1 <
i <n — 1} be a vertex and edge set of graph T,,©OK; .
Case 1 : If nis even then by Theorem 2.1 T,,®K; is H —cordial. Therefore it is H,- cordial.
Hence it is H;- cordial.
Case 2 : If nis odd, then
Consider a function f: E - {—1,1} defined as

fuing) = fuv) = fwe,v) = (D 1<i<n—-1

fu'y) = fly') = (=1

Edge Condition Vertex Condition
n=3
n is odd _5n—5 5n—3 vp(1) =2n—1,vp(-1) = 2n — 2
(1) =—5—e(-1)— v(3) = 0,v,(=3) = 1

Hence, T,,®K, is H; — cordial
Example 2.4 Ts©K; is H; — cordial shown in Figure 2.
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Figure 2: TsOK;
Theorem 2.5 The H-graph of path P, is H; -cordial.
Proof: Let H graph of path P, with vertices uq, u,, ........u, and vy, v,, ... ..... v, by joining
the vertices un+1 and vn+1 by an edge if n is odd and the vertices un and vr__ if nis even.
2 2 2

2

Let E = {uiuiﬂ,vi vi+1,uln_+1l, U[n_—l—l] 1 <i <n- 1} be an edge set of H — graph.
2 2
Consider a function f: E — {—1,1} defined as

fuiui41) =1;1<i<n-1,

fivy) =-1;1<i<n-1,

d (”I"T“J ”I%“l) -t

Edge Condition Vertex Condition
n
n=3 ef(1)=n vp(1) = 2,v,(—1) =3
er(—1)=n-1 ve(2) =n—3 =vp(-2)

In each case, the graph satisfies the condition |es (i) — e;(—1)| < 1 and |v;(i) — vp(=D)| <
1.

Hence, H-graph of path P, is H; — cordial

Example 2.6 H-graph of path Py is H; — cordial shown in Figure 3.

1 @ @-1
1 -
29 Q.2
1 -1
3 1 Q-2
1 -1
2Q 1
1 1
20 0-2
1 1
10 @1

Figure 3: H-graph of path P
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Theorem 2.7 The H © K; graph of path P, is H3 -cordial.

Proof: Let H-graph of path B, with vertices uq, u,, ... .....u, and vy, v,, ... ..... v, by joining

the vertices un+1 and vn+1 by an edge if n is odd and the vertices un and vn_ If n is even.
2 2

2 2
Ug, Up, e eee Uy, Vg, Vg, e Uy are join by edge to the vertices u'y,u'y, ..o’y

v, vy, e V', respectively. Let E = uiqu,viviH,uiu’i,viv’i,uln_HJ U[n_-l-l]il <
2 2

i <n-— 1} be an edge set of H O K; graph.
Consider a function f: E = {—2,—1,1,2} defined as
fluuip)=1;1<i<n-1
fivip)=-1;1<i<n-1

o=y

; Otherwise
Iy -1 ,lfl =1,n
fi, ') _{ 1 ;Otherwise
d (“PT“J ”I%“l) -
n Edge Condition Vertex Condition
n=3 er(1) =2n—1=ef(-1) ve(1) =2n—2,v,(-1) = 2n -3

Hence, HOK; graph of path B, is H; — cordial.
Example 2.8 HOK; graph of path Ps is H; — cordial shown in Figure 4.

2 -2
1 -1
10———@ o—01
1 -1
-1 1
1@—Q 1 1Q—@1
1 -
1 3 2 1 1
1@ © © @ 1
1 1
-1
1 @—@Q1 -1 @@ 1
1 -1
1 -1
10—0, 20—0@ 1

Figure 4: HOK; graph of path Ps
Theorem 2.9 Kite graph K3, is Hz -cordial.
Proof: Kite graph K3 ,,, is obtained by attaching a path of length m with C; . Let
Up, Uy een oo U, 43 are vertices of graph and u,, u,, u; formacycle C; .Let u; be a common
vertex of a cycle C; and path of length m . Let F = {u us, u;u;41:1 <i <m+3}bean
edge set of kite graph K3 ,,,.

Consider a function f: E - {—2,—1,1,2} defined as
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CaselIfm =1, then

fuiuy) =2, f(uguz) = —1,f (wous) = 1,
fuzuy) = —1.

Case 2 If m = 2, then

fuiuy) =2, f(uguz) = —1,f (wous) = 1,

f(u3u4) =-2, f(u4u5) =—1.
Case 3 If m = 3, then

fuuy) =2, f(ugug) = —1,

( . Im+3
1;2<i< J

fuuip) =1 -2;i = lm+ 3J

m+3

J+2Si£m+2

[IAS

Edge Condition Vertex Condition
m
m=1 er(1) =1,e(-1) =2 vp(1) =1L, ve(—1) = 2
m=2 er(1) =1,e(-1) =2 ve(1) =1Lv(-1) =1
m is odd s (1) =m;-1=ef(_1) vf(l);2_§ vp(=1)
er(2) = 1,e(-2) =1 vp(2) = ——=v7(=2)
i 2 =2 = —
m is even ef(l):%’ef(_l):m; vfgrll)_42 s ( Dm—
er(2) = 1,e0(~=2) = 1 v (2) =—— v (=2) = ——

Hence, K3, Graph is H; — cordial.

Example 2.10 K35 Graph is H3 — cordial shown in Figure 5.

Figure 5: Kjs
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Theorem 2.11 The graph K3, O K; is H, -cordial.

Proof: A graph K3, O Kj is obtained by attaching an edge to each vertex of graph K3 ,, .
Let uy, uy, ... ... U3 are vertices of graph K3 ,,, .Hence new vertices are u'y, u',, ..., u' 43
and edges w;u’;,1 <i <m+ 3.let u; beacommon vertex of a cycle C; and path of
lengthm . Let E = {u us, u;u;.q, w;u';: 1 < i < m+ 3} be an edge set of kite

graph K3 m O K.

Consider a function f: E = {—1,1} defined as
f g )_{—1 ;3<ism+2
17 7 U1 otherwise

;3<ism+2

faat) = {2

; otherwise
m Edge Condition Vertex Condition
m2=>1 er(1) =m+3 =ep(-1) ve(1) =m+2 =v:(-1)

Hence, K3,, O K; Graph is H, — cordial.
Example 2.12 K3, O K; Graph is H, — cordial shown in Figure 6.
- 1

Figure 6: K34, © K3
Theorem 2.13 Ladder graph L,, 1 (n = 4) is H, —cordial if n is even.
Proof: LetV = {u;,v;:1 <i<n}and E = {wjuj41,ViVi;1,1<i<n—1}U {yv;: 1 <
i < n} are vertex and edge set of ladder graph L, ;.
Consider a function f: E - {—1,1} defined as
n

1 ;1<i< 5
fuinip) = f(Vvigg) = n

-1 ;E <i<n-1
fuvy) =1, f(upvy) = —1

n

-1 ;2<i< 5 +1

f(uivi) = n
1 i3 +2<i<n-1
n Edge Condition Vertex Condition
n is even 3n—2 ve(1) =n—2=1v:(—1)
1) = =e(—1 f f

Hence, L, Graph is H, — cordial if nis even.
Example 2.14 L, Graph is H, — cordial shown in Figure 7.
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Figure 7: Ly,

Theorem 2.15 Ladder graph L,, ; is H; -cordial.

[IAS

Proof: LetV = {u;,v;:1 <i<n}and E = {u;uj41, VijVi;1,1<i<n—-1}U {yv; : 1 <

i < n} are vertex and edge set of ladder graph L, ; .

Case 1: If n is even then by Theorem 2.13 L, ; is H,- cordial. Therefore it is H- cordial.

Case 2: If n = 2, then

Consider a function f: E - {—2,—1,1,2} defined as

fuvy) =2,
fuzvy) = =2,
fuuy) =1,
fvivy) = -1

Case 3: If n = 3, then

Consider a function f: E - {—2,—1,1,2} defined as

fuvy) =2,
fluv;) =1,
fluzvs) = =2,

fuuip) =Li=12,

f(vivi+1) =-1;i=1,2.

Case 4: If n = 5 ,then

Consider a function f: E - {—1,1} defined as

n
1 ilﬁiﬁT
fuiuiy) =

n—1 ci< L
5 S i<n
1 ;1<i<——
fivip) = n+3
— ; <i<n-1
f(u1v1) =1,
f(unvn) = -1,
o n+1
-1 ;2<i<
fuv) = n+3
; > <i<n-1
n Edge Condition Vertex Condition
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[IAS

n=3 er(1) =3,e(—=1) =2 ve(1) = Lvp(—1) =2
er(2) =1=e;(-2) vr(3) =2,v,(=3) =1

nis odd _3n-3 y_3n-1 ve(D)=n—2v(-1)=n-3
g)=—=— D=5 vp(2) = 2 = vp(~2)

In each case, the graph satisfies the condition |ef(i) - ef(—i)| <1land |vf(i) - vf(—i)| <
1.

Hence, L, Graph is H; — cordial.

Example 2.16 Ls ; Graph is H3 — cordial shown in Figure 8.

-2 .2
Figure 8: Ls
Theorem 2.17 The graph L,, ; O K; is Hs -cordial.
Proof Let V = {u;,v,u';,v';:1 <i<n} and E ={uujy1, ViViz1 , 1<i<n-1}U
{wv, uu'y, viv'; + 1 < i < n}are vertex and edge set of ladder graph L, ; O K;.
Consider a function f: E = {—2,—1,1,2} defined as
fluvy) =1, flu,vy) = =1, f(wv) = (-1)2;2<i<n-1
fu)) =11<i<n-1

f(vivi+1) =-11<i<n-1
fuu'y)=-1;1<i<n
fov')=11<i<n
n=2 Edge Condition Vertex Condition
n is even er(1) = 2n = ef(—-1) 5 (1) = 3n+2 — (1)
n-— 2
ef(z) = = ef(_z) n—2
’ 7 (3) = o = vy (=3)
i = = — 3n+3 3n+1
nis odd ef(ln)_lzn er( 1)n_3 vr(1) = . Jvp(~1) = _
er(2) = ——,e(-2) = n—1 n—3
: 2| ) =—— v (-3) = —

Hence, L,,1 O K; Graph is H; — cordial.
Example 2.18 Ls; O K; Graph is H3 — cordial shown in Figure 9.
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1@ @ @

[IAS

@1
1 -1
A 3 2 1 1
1@ O © @1
1 -1
1 -1 -2 3 1
1@ o @ @ 1
1 -
1 3 2 1 1
e O O @1
-1
a 1 4 1
1@ O O @1

-1 -1

Figure9: L5, O K
Theorem 2.19 Comb ( B,0OK;) (n = 2)is H; — cordial.
Proof: Let B, be the path u,, u,, ...
each vertex .LetV = {uy;,u’; : 1 <i <n}and E = {u;u;44
i < n}are vertex and edge set of graph P,OK; .

Consider a function f: E = {—2,—1,1,2} defined as
fuui,) = (FDHL2;1<i<n-1

fuu'))= (-1D';1<i<n

.,Uy. The graph P,®K; is obtained by adding edge to
:1<i<n—-1} U{yu';:1<

Edge Condition Vertex Condition
n=?2
n is even er(1) = g = e;(~1) (1) =nve(-1)=n-1
n n—?2 vf(3) =1, vf(—S) =0
ef(z) = E,ef(_z) = >
nis odd n—1 _n+1 ve(1) =nve(-1)=n-1
) =—— gl == vr(3) = 0,v(=3) = 1
n —
er(2) = o er(—2)

Hence, B,®K; is H; — cordial.
Example 2.20 P;®K; is H; — cordial shown in Figure 10.

Figure 10: P,OK;
Theorem 2.21 The B,OmK; is Hz — cordial(n = 3).

Proof: Let P, be a cycle with vertices uq, u,, ... u,. B,®©mKj is obtained from path B, by
attaching m — pendant edge to each vertex. Let V = {u;,u;; : 1 < i <n,1 <j <m}and
E={uu,;:1<i<n—-1} U{wu; : 1 <i<n1<j<m}are vertex and edge set of

graph B,OmK; .
Consider a function f: E — {—2,—1,1,2} defined as
Case 1: If m is even, then
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n
1 ;1Si£[ﬂ—1
fuugy,) = 2 si= [g]

-1 Otherwise
fluw;)= (-Di1<i<nl1<j<m

mmn =3 Edge Condition Vertex Condition
m is even nm+1)—2 mn+ 4 mn + 2
(1) = = (-1 | vy () =5 (-1) = —
2)=1,e/(-1)=0 n—4
ef( ) ef( ) Uf(Z) — T — Uf(—Z)
Case 2: If mis odd, then
fuug,) = (D"2;1<i<n—1
fluuy) = (1) 1<i<n
fluw;)= (-1;1<i<n2<j<m
Edge Condition Vertex Condition
n = 3,mis odd
i mn
n is even er(1) = = er(~1) vy(1) = (m -; 1)n'
n n—2 _
er(2) = E'ef(_z) = ve(—1) = (m+1n-2
n is odd mn—1 m+ 1)n
(D) =" ¢ (- 1) vy = 22D
mn+1 (m+1n-2
2 y (1) =
n— = —_ =
ef(Z) — T — ef(—2) Uf(?)) O,Uf( 3) 1

Hence, B,OmK; is H; — cordial.
Example 2.22 P,®4K; is H; —cordial shown in Figure 11.
1

1 3 2

Figure 11: P,©4K,

Theorem 2.23 Crown C,,®K;is H — cordial.

Proof: Let C,, be a cycle with vertices u,, u,, ... u, with u,,; = u;. C,®K, is obtained from
cycle C,, by attaching pendant edge to each vertex. Let V = {u;,u’; : 1 <i < n}and

E ={uu;,,,u;u';:1 <i<n,u,,, =u,} arevertex and edge set of graph C,OK; .
Consider a function f: E — {—1,1} defined as
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fuui) =1;1<i<n

fluyu'))=-1;1<i<n
n=>3 Edge Condition Vertex Condition
n er(1) =n=e/(-1) V(1) =n =vp(-1)

Hence, C,,®K, is H — cordial.
Example 2.24 C;®K; is H —cordial shown in Figure 12.

1

Figure 12: 50K,

Theorem 2.25 The C,®OmK;is H — cordial if m is odd (n = 3).

Proof: Let C,, be a cycle with vertices u,, u,, ... u, with u,,; = u,. C,®mkKj is obtained
from cycle C,, by attaching m — pendant edge to each vertex. Let V = {ui,uij :1<i <
n1<j<m}andE = {wu;, uw;:1 <i<n1<j<m,u,yq =u} are vertexand
edge set of graph C,,OmK; .

Consider a function f: E — {—1,1} defined as

fuup) =1;1<i<n

fuuy) =-1;1<i<n

fluw;)= (-1;1<i<n2<j<m

m Edge Condition Vertex Condition
m is odd n(m+ 1) n(m+1)
er(1) = —— = er(—1) vp(1) = —— = vp(—1)

Hence, C,®OmK;is H — cordial.
Example 2.26 C<®3K; is H —cordial shown in Figure 13.
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Figure 13: Cs®3K;

Theorem 2.27 The C,©OmK, is H; — cordial if mis even(n = 4).
Proof: Let C,, be a cycle with vertices u,, u,, ... u, with u,,; = u;. €,O©mkKj is obtained
from cycle C,, by attaching m — pendant edge to each vertex. Let V = {ui,uij :1<i <
n,1<j<m}andE = {wu;y; , wu;:1 <i<n1<j<m,u,; =u,} are vertex and
edge set of graph C,,OmK; .
Consider a function f: E — {—2,—1,1,2} defined as

(1 1<i<[M-

(1 51s<is [2] 1

. n

fuugyq) = { 2 ji= [El
- [ﬂ+1<'< 1
k— 25 <i<n-

f(unul) = _21 ]
fluw;)= (-1;1<i<n1<j<m
m is even Edge Condition Vertex Condition
is odd nm+1)—1 nm + 2
n ef(l) — %} Uf(l) = > = vf(—l)
+1)-3 n-—3 n—>5
er(2) =1=ep(-2) vr(3) =1 =vp(-3)
IS even nm+1)—2 nm + 2
" er(1) = % =er(—1) vr(1) = > = ve(—1)
= = — - 4‘
er(2) =1=¢er(—2) 0 (2) = n s o (=2)

Hence, C,®OmK; is H; — cordial.
Example 2.28 C,®4K; is H; — cordial shown in Figure 14.
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1 1

Figure 14: C,04K;
Theorem 2.29 Circular ladder graph CL,, ,n = 3 is H — cordial if n is even.
Proof: Let = {u;,v;, 1 <i<n}and F = {u;u; 1, v;Viy, 4iv; : 1 < i <nwithu,,; =
Uy, Unyq = 4} are vertex and edge set of graph CL,, .
Consider function f: E — {—1,1} defined as
fuuipy) = (1)1 <i <n,
fowie) = (D)1 <i < n,
fuv) =(=D";1<i<n,

n=3 Edge Condition Vertex Condition
n is even 3n ve(1) =n = vp(—1

Hence, CL, is H — cordial if n is even.
Example 2.30 CL, is H; — cordial shown in Figure 15.

-1 1 -3

Figure 15: CLg

Theorem 2.31 Circular ladder graph CL,, ,n = 3 is H; — cordial.

Proof: Let = {u;,v;,1 <i<n}and E = {uu;;1,vivis, uiv; : 1 < i <nwithu,,, =

Uy, Vpy1 = 4} are vertex and edge set of graph CL,, .

Case 1: If n iseventhenitis H — cordial with |f(v)| = 1.Therefore it is H, — cordial and
also H; — cordial.

Case 2: If n is odd then

Consider function f: E — {—1,1} defined as

fuuip) =1;1<i<mn,
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fwip) =—-1;1<i<n,
flyv) =(-D"*;1<i<n
n =3 Edge Condition Vertex Condition
n is odd n+1 3n—1 n—1 n+1
ef(l) = T:ef(_l) = > Vf(l) = T:vf(_l) = >
n+1 n—1
v(3) = ——,vp(-3) = ——

Hence, CL,, is H; — cordial.
Example 2.32 CLs is H; — cordial shown in Figure 16.

1

Figure 16: CL<
3. CONCLUSION

In this paper we have proved that H- graph, Kite graph, Ladder graph ,Comb, Crown
and T,0K;,H O K; ,K3,n O Ky, L,1 O K; graph are Hy — cordial labeling.
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