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1. INTRODUCTION

In 1965, Zadeh [15] introduced the concept of fuzzy set. Following the concept of
fuzzy sets Kramosil and Michalek [6] introduced the concept of fuzzy metric space in 1975.
George and Veeramani [2] modified the notion of fuzzy metric spaces with the help of
continuous t-norm, which shows a new way for further development of analysis in such
spaces. In 2006, Sedghi and Shobe [12] defined a new notion called M- fuzzy metric spaces
and proved a common fixed point theorem for four weakly compatible mappings in this
space. Recently, Jain et al. [11] improved the result of Kumar and Pant [8] by dropping the
condition of continuity of the mapping and using semi and weak compatibility of the
mapping in place of compatibility.

In this paper, we prove a common fixed point theorem for weakly compatible
mappings satisfying common E.A. Like property in generalized fuzzy metric space, which
generalize the result of Jain at al. [11] using rational inequality.
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2. PRELIMINARIES

Definition 2.1
A 3-tuple (X, M, = ) is called M-fuzzy metric space (generalized fuzzy
metric space) if X is an arbitrary non empty set, * is a continuous t-norm
and M is a fuzzy set on X3 x (0,0), satisfying the following conditions:
for each x, ¥, z, a € X and t, s > 0.
(D) M, y, z, t) > 0,
(i) MK y, z t) =1 if and only if x =y = z
i) M Xy, z, t) = M@p{X, vy, z}, t), where p is a permutation function.
(iv) M, Yy, a t) *M(@, z, z, ) < M (X, Y, z, t + 9),
(iv) M, Yy, z, . ) : [0, ©) — [0,1] is left continuous,
V) tlLrgM(x, y, z, t) = 1 for all x, y, z € X

Definition: 2.2
Let (X, M, *) be an M-fuzzy metric space and {xn} be a sequence in
X
i) A sequence {xn} in S is said to be convergent to a point x € X,

(denoted by_ _
my = x ), if "M (x, xxt) = 1 for all t > 0

n—->0oo n—->oo

i) A sequence{xn} in X is said to be a Cauchy sequence if
m N (Xns py Xn+ p, Xn, t) =1for all t > 0 and p> O.

n—-oo

iii) A M-fuzzy metric space in which every Cauchy sequence is convergent is said
to be complete.

Definition :2.3
A function M is continuous in M- fuzzy metric space if and only if
whenever
Xo — X , Yoo Yy and zy— z, then ™M (Xo, Yo, Zo ) = M (x, y, z1) for
all t > 0.
Definition: 2.4

Let A and B be mappings from M - fuzzy metric space (X, M,*)
into itself.  The

mappings A and B are said to be weakly compatible if they commute at
their coincidence

points, i.e. Ax = Bx implies ABx = BAX.
Definition : 2.5

Suppose A and S be two maps from a M -fuzzy metric

space(X, M,*) into itself. Then they are said to be semi-compatible if
limASx, = Sx whenever {X,} is a sequence such that limAx, =limSx, =
n—->oo n—oo n—->oo

X eX

Lemma : 2.6
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Let {xn} be a sequence in a M -fuzzy metric space (X, M,*) with
(FM-6). If there exists a number h > 1 such that M(Xn+1, Xn, Xn, ht) <
M(Xn+2,Xn+1, Xn+1, t) for all t > 0 and

n = 1,2... .Then {xn} is Cauchy sequence in X.
Lemma: 2.7

If for all x, yzeX, t > 0 and for a number h > 1, M(x,y, z ht) <
M(x,Yy,zt) then

X = y=2z.
3. Main results
Theorem 3.1:

Let (X, M,*) be a complete generalized fuzzy metric space where * is
continuous t-norm and satisfies t * t > t for all te [0, 1]. Let A, B, S

and T be self mappings of a generalized fuzzy metric space satisfying the
following conditions:

(3.1.1) For all x, vy, ze X , t >0 and h > 1

M(AXBY,Bzht) < min{M(Sx.AxAy.1),M(Ty,By,Bz.1), TM(SX'rf[y('BiZT’ty);ﬂgi"'“’“‘”},

where r,s > 0 with r and s cannot be simultaneously O.

(3.1.2) Pairs (A,S) and (B,T) satisfy common E.A. Like property.
(3.1.3) Pairs (A,S) and (B,T)are weakly compatible.
Then A, B, S and T have a unique common fixed point in X.
Proof:

Since (A,S) and (B,T) satisfy common E.A. Like property, therefore there
exist two sequences {xn} and {yn} in X such thatlimAx, = IlimSx, =
H&Ty” = 7{1_1)‘210 Byn = w, where w e S(X)NT(X) or z neﬁooA(X)mB(XrS.ﬁoo

Suppose z e S(X)NT(X), now we havelimAxn = w e S(X) then w = Su

n—-oo

for some u e X
Now, we claim that Au = Su, form (3.1.1) we have,
M (Au,Byn,Byn,ht) < min{M (Su,Au,Ayn,t), M (Tyn,Byn,Bynt),

rM(Su, Byp, Bypt) + sM(SuTyp,Tyn,t)
TM(BYH;TYH'BYHI) + s

1.

Taking limit n —oo, we get

rM(w,wwit) + sM (w,w,w,t)}
rMw,wwt) + s

M (AuU,Byn,Bys, ht) < min{M(w,Au,w,t), M (w,w,w,t),
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M(Auw,w,ht) < min{M (w,Au,w,t),1,1}
M(Au,w,w,ht) < M(w,Au,w,t)
M(Au,w,w,ht) < M(Au,w,w,t).

A

Lemma (2.7) implies that Au = w = Su.

Since the pair (A,S) is weak compatible, therefore Aw = ASu = SAu= Sw.
Again, 1113)10 Byn = w € T(X) then w = Tv for some v e X

Now, we claim that Tv = Bv, from (3.1.1) we have,

M (Axn,Bv,Bv,ht) < min{M (Sxn,Axn,AV,1),M (Tv,Bv,BV,t),

rM(Sx,, Bv, Bvit) + sM(an,Tv,Tv,t)}
rM(Bv,Tv,Bv,t)+ s )

Taking limit n —oo, we get

M((w, Bv, Bv,t) + M(w,w,w,t)

M (w,Bv,Bv,ht) < min{M (w,w,Av,t), M (w,Bv,Bv,t), By aBeDr s

i

M (w,Bv,Bv,ht) < min{1, M(w,Bv,Bv,t),1 }

M (w,Bv,Bv,ht) <M (w,Bv,Bv,t)

M (Bv,Bv,w,ht) <M (Bv,Bv,w,t)

Lemma (2.7) implies that Bv = w = Tv = Aw.

Since the pair (B,T) is weak compatible, therefore Tw = TBv = BTv = Bw.
Now, we show that Aw = w, from (3.1.1) we have,

M (AW,Byn,yn,ht)< min{M (Sw,Aw,Ayn,t), M (Tyn,Byn,Byn,t),

rM(Sw, Byn, Byn,t)+ sM(Sz,Typn,Tynt)
M (Byn,TynByn,t) + s

1.

Taking limit n  —oo, we get

rM(Aw,w, wit) + s M (Aw,w,w,t)}
rM(w,w,w,t)+ s

M(Aw,w,w,ht) < min{M (Aw,Aw,Aw,t), M (W,w,w,t),

r M(Aw,w, w,t)
r MWw,w,w,t)+s

M (Aw,w,w,ht) < min{l1,1, }

M (Aw,w,w,ht) <M (Aw,w,w,t).

Lemma (2.7) implies that Aw = w.

Now, we show that Bw = w, from (3.1.1) we have,
M (Axn,Bw,Bw,ht)< min{M (Sxn,Axn,AW,t), M (Tw,Bw,Bw,t),
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rM(Sx,, Bw, Bw,t)+ s M(Sxpy,Tw,Tw,t)
r M(By,Tw,Bw,t)+ s

1.

Taking limit n  —oo, we get

rM(w, Bw, Bw,t)+ s M(w,Bw,Tw,t)

M (w,Bw,Bw,ht) < min{M (w,w,w,t),M (Bw,Bw,Bwi,t), A GwBwEWD + s

}

M (w,Bw,Bw,ht) < min{l1,1, M (w, Bw, Bw,t)
M (w,Bw,Bw,ht) <M (w,Bw, Bw,t)

M(Bw,Bw, w, ht) <M (Bw,Bw, w, t)

Lemma (2.7) implies that Bw = w.

Hence, Aw = Sw = Bw = Tw = w.

Thus w is a common fixed point of AB,S and T

To prove uniqueness we suppose that p and q are two common fixed point
of AB,S and T such that p # ¢, then from (3.1.1) we have,

M (Ap,Bq,Bg,ht) < min{M (Sp,Ap,Aq,t),M(Tq,Bq,Bq,t),

rM(Sp! Bq: qut)+SM(SpJTq!Tq!t)}
rM(Bq,Tq,Bq,t)+s

. oaabs s Mon
MPaaht) < mingM(p.a.M (0,60, Pt S TPy

M(p,q,0,ht) < min{1,1, M(p,q,q,t)
M(p,a,9,ht) <M (p,q.,9,t)

Lemma (2.8) implies that p = q.
Corollary: 3.2

Let (X, M,*) be a complete generalized fuzzy metric space where * is
continuous t-norm and satisfies t * t > t for all te [0, 1]. Let A B, S
and T be self mappings of a generalized fuzzy metric space satisfying the
following conditions:

(3.2.1) For all x, v,z ¢ X, t>0wad h > 1
M (AX, By, Bz, ht) < min{M (Sx, AXx,Ay, t), M (Ty, By,
Bzt rM(Sx, By, Bzt)+sM(Sx,Ty,Tz_t)

), rM(By,Ty,Bz,t)+s iz
where r,s > 0 with r and s cannot be simultaneously O.
(3.2.2) Pairs (A, S) and (B, T) satisfy common E.A. Like property.
(3.2.3) Pairs (A, S) and (B, T) are semi- compatible.

Then A, B, S and T have a unique common fixed point in X.
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