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Abstract: The 𝑭-average eccentric graph 𝑨𝑬𝑭(𝑮) of a graph 𝑮 has the vertex set as in 𝑮 

and any two vertices 𝒖 and 𝒗 are adjacent in 𝑨𝑬𝑭(𝑮) if either they are at a distance 

⌊
𝒆(𝒖)+𝒆(𝒗)

𝟐
⌋  while 𝑮  is connected or they belong to different components while 𝑮  is 

disconnected. A graph 𝑮 is called a 𝑭-average eccentric graph if 𝑨𝑬𝑭(𝑯) ≅ 𝑮 for some 

graph 𝑯. In this paper, we find some sufficient conditions for a disconnected graph to be or 

not to be a 𝑭-average eccentric graph. 
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1. INTRODUCTION 

 

 Throughout this paper, a graph means a non trivial simple graph. For other graph 

theoretic notation and terminology, we follow [8,9]. Let 𝐺 be a graph with vertex set 𝑉(𝐺) 

and edge set 𝐸(𝐺). 𝑑(𝑣) denotes the degree of a vertex 𝑣 ∈ 𝑉(𝐺), the order of 𝐺 is |𝑉(𝐺)| 
and the size is |𝐸(𝐺)|. The distance 𝑑(𝑢, 𝑣) between a pair of vertices 𝑢 and 𝑣 is the length 

of a shortest path joining them. The eccentricity 𝑒(𝑢) of a vertex 𝑢 is the distance to a vertex 

farthest from 𝑢. The radius 𝑟(𝐺) of 𝐺 is the minimum eccentricity among the eccentricities 

of the vertices of 𝐺  and the diameter 𝑑(𝐺) of 𝐺  is the maximum eccentricity among the 

eccentricities of the vertices of 𝐺 . Splitting graph 𝑆(𝐺) of a graph 𝐺  was introduced by 

Sampath Kumar and Walikar [6]. For each vertex 𝑣 of a graph 𝐺, take a new vertex 𝑣′ and 

join 𝑣′ to all the vertices of 𝐺 adjacent to 𝑣. The graph 𝑆(𝐺) thus obtained is called the 

splitting graph of 𝐺. A vertex 𝑣 is called an eccentric vertex of a vertex 𝑢 if 𝑑(𝑢, 𝑣) = 𝑒(𝑢). 
A vertex 𝑣 of 𝐺 is called an eccentric vertex of 𝐺 if it is the eccentric vertex of some vertex 

of 𝐺. Let 𝑆𝑖(𝐺) denote a subset of the vertex set of 𝐺 such that 𝑒(𝑢) = 𝑖 for all 𝑢 ∈ 𝑉(𝐺). 
The concept of antipodal graph was initially introduced by Singleton [1] and was further 

expanded by Aravamuthan and Rajendran [3,4]. The antipodal graph of a graph 𝐺, denoted by 

𝐴(𝐺), is the graph on the same vertices as of 𝐺, two vertices being adjacent if the distance 

between them is equal to the diameter of 𝐺. A graph is said to be antipodal if it is the antipodal 

𝐴(𝐻) of some graph 𝐻. The concept of eccentric graph was introduced by Akiyama et al. [2]. 

The eccentric graph based on 𝐺 is denoted by 𝐺𝑒 whose vertex set is 𝑉(𝐺) and two vertices 

𝑢 and 𝑣 are adjacent in 𝐺𝑒 if 𝑑(𝑢, 𝑣) = 𝑚𝑖𝑛{𝑒(𝑢), 𝑒(𝑣)}. The concept of radial graph was 

introduced by Kathiresan and Marimuthu [5]. The radial graph 𝑅(𝐺) based on 𝐺  has the 

vertex set as in 𝐺 and two vertices are adjacent if the distance between them is equal to the 
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radius of 𝐺  while 𝐺  is connected. If 𝐺  is disconnected, then two vertices are adjacent in 

𝑅(𝐺) if they belong to different components of 𝐺. A graph 𝐺  is called a radial graph if 

𝑅(𝐻) = 𝐺 for some graph 𝐻. Sathiyanandham and Arockiaraj introduced a new graph, called 

𝐹-average eccentric graph [7]. Two vertices 𝑢 and 𝑣 of a graph are said to be 𝐹-average 

eccentric to each other if 𝑑(𝑢, 𝑣) = ⌊
𝑒(𝑢)+𝑒(𝑣)

2
⌋. The 𝐹-average eccentric graph of a graph 𝐺, 

denoted by 𝐴𝐸𝐹(𝐺), has the vertex set as in 𝐺 and any two vertices 𝑢 and 𝑣 are adjacent in 

𝐴𝐸𝐹(𝐺) if either they are at a distance 𝑑(𝑢, 𝑣) = ⌊
𝑒(𝑢)+𝑒(𝑣)

2
⌋ while 𝐺 is connected or they 

belong to different components while 𝐺 is disconnected. A graph 𝐺 is called a 𝐹-average 

eccentric graph if 𝐴𝐸𝐹(𝐻) ≅ 𝐺  for some graph 𝐻. In this paper, we find some sufficient 

conditions for a disconnected graph to be or not to be a 𝐹-average eccentric graph. 

Let 𝐹22 be the set of all connected graphs 𝐺 for which 𝑟(𝐺) = 𝑑(𝐺) = 2. 

 

Theorem A[7] Let 𝐺  be a graph on 𝑛  vertices. Then a vertex is a full degree vertex in 

𝐴𝐸𝐹(𝐺) if and only if either it is an isolated vertex or a full degree vertex or a non full degree 

vertex adjacent to the full degree vertices only in 𝐺. 

 

Theorem B[7] For any graph 𝐺 ∈ 𝐹22, 𝐴𝐸𝐹(𝐺) = 𝐺. 
 

2. RESULTS ON 𝑭-AVERAGE ECCENTRIC GRAPHS 

 

Proposition 2.1. If 𝐺 is a disconnected graph with no isolated vertex, then 𝐺 is a 𝐹-average 

eccentric graph. 

Proof. By hypothesis, 𝐺 ∈ 𝐹22  and by Theorem B, 𝐴𝐸𝐹(𝐺) ≅ 𝐺 = 𝐺 .                         

□  

 

Theorem 2.2. If 𝐺  is a disconnected graph having a component of the form 𝐾𝑟1,𝑟2,...,𝑟𝑛
−

𝐸(𝐾𝑛) where 𝑟1, 𝑟2, . . . , 𝑟𝑛 are positive integers, then 𝐺 is a 𝐹- average eccentric graph. 

Proof. In 𝐾𝑟1,𝑟2,...,𝑟𝑛
, let 𝑉𝑖 = {𝑣1

(𝑖)
, 𝑣2

(𝑖)
, . . . , 𝑣𝑟𝑖

(𝑖)
} be the 𝑖𝑡ℎ partition of 𝐾𝑟1,𝑟2,...,𝑟𝑛

, 1 ≤ 𝑖 ≤ 𝑛. 

Let 𝑉(𝐾𝑛) = {𝑢𝑖 ∈ 𝑉𝑖: 𝑖 = 1,2, . . . , 𝑛}. By graph symmetry, assume that 𝑢𝑖 = 𝑣1
(𝑖)

 for each 

𝑖 = 1,2, . . . , 𝑛 and 𝐸(𝐾𝑛) = {𝑣1
(𝑖)

𝑣1
(𝑘)

: 𝑖 ≠ 𝑘, 1 ≤ 𝑖, 𝑘 ≤ 𝑛}. Construct 𝐻 from 𝐺 as follows: 
𝐻1, 𝐻2  are two partitions of 𝐾𝑟1,𝑟2,...,𝑟𝑛

 and 𝑉(𝐻3) = 𝑉(𝐺) − 𝑉(𝐾𝑟1,𝑟2,...,𝑟𝑛
− 𝐸(𝐾𝑛))  where 

𝑉(𝐻1) = {𝑣𝑗
(𝑖)

∈ 𝑉𝑖: 2 ≤ 𝑗 ≤ 𝑟𝑖, 1 ≤ 𝑖 ≤ 𝑛}  and 𝑉(𝐻2) = {𝑣1
(𝑖)

∈ 𝑉𝑖: 1 ≤ 𝑖 ≤ 𝑛} . 𝐸(𝐻) =

{𝑣𝑗
(𝑖)

𝑣1
(𝑖)

: 2 ≤ 𝑗 ≤ 𝑟𝑖, 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣1
(𝑖)

𝑤: 𝑤 ∈ 𝑉(𝐻3),1 ≤ 𝑖 ≤ 𝑛} ∪

𝐸(𝐺 − (𝐾𝑟1,𝑟2,...,𝑟𝑛
− 𝐸(𝐾𝑛)). For 2 ≤ 𝑗 ≤ 𝑟𝑖  and 1 ≤ 𝑖 ≤ 𝑛 , 𝑒(𝑣𝑗

(𝑖)
) = 4 , 𝑒(𝑣1

(𝑖)
) = 3  and 

the eccentricities of the remaining vertices of 𝐻  are 2. Also 𝑑𝐻(𝑣𝑗
(𝑖)

, 𝑣𝑗′
(𝑘)

) = 4 , 

𝑑𝐻(𝑣𝑗
(𝑖)

, 𝑣1
(𝑘)

) = 3 , 𝑑𝐻(𝑣𝑗
(𝑖)

, 𝑣1
(𝑖)

) = 1  and 𝑑𝐻(𝑣1
(𝑖)

, 𝑣1
(𝑘)

) = 2  for 2 ≤ 𝑗 ≤ 𝑟𝑖 , 2 ≤ 𝑗′ ≤ 𝑟𝑘 , 

𝑖 ≠ 𝑘  and 1 ≤ 𝑖, 𝑘 ≤ 𝑛 , 𝑑𝐻(𝑣𝑗
(𝑖)

, 𝑢) = 2  and 𝑑𝐻(𝑣1
(𝑖)

, 𝑢) = 1  for 𝑢 ∈ 𝑉(𝐻3) , 2 ≤ 𝑗 ≤ 𝑟𝑖 

and 1 ≤ 𝑖 ≤ 𝑛, 𝑑𝐻(𝑣, 𝑤) = 2 for every non adjacent pairs of vertices 𝑣 and 𝑤 in 𝑉(𝐻3). 

This implies that 𝑑𝐻(𝑣𝑗
(𝑖)

, 𝑣𝑗′
(𝑘)

) = ⌊
𝑒(𝑣𝑗

(𝑖)
)+𝑒(𝑣𝑗′

(𝑘)
)

2
⌋ , 𝑑𝐻(𝑣𝑗

(𝑖)
, 𝑣1

(𝑘)
) = ⌊

𝑒(𝑣𝑗
(𝑖)

)+𝑒(𝑣1
(𝑘)

)

2
⌋  for 2 ≤

𝑗 ≤ 𝑟𝑖 , 2 ≤ 𝑗′ ≤ 𝑟𝑘, 𝑖 ≠ 𝑘 and 1 ≤ 𝑖, 𝑘 ≤ 𝑛, 𝑑𝐻(𝑢, 𝑤) = ⌊
𝑒(𝑢)+𝑒(𝑤)

2
⌋ for every non adjacent 
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pairs of vertices 𝑢  and 𝑤  in 𝑉(𝐻3) . Also 𝑑𝐻(𝑣𝑗
(𝑖)

, 𝑣1
(𝑖)

) < ⌊
𝑒(𝑣𝑗

(𝑖)
)+𝑒(𝑣1

(𝑖)
)

2
⌋  and 

𝑑𝐻(𝑣1
(𝑖)

, 𝑣1
(𝑘)

) < ⌊
𝑒(𝑣1

(𝑖)
)+𝑒(𝑣1

(𝑘)
)

2
⌋  for 2 ≤ 𝑗 ≤ 𝑟𝑖, 𝑖 ≠ 𝑘  and 1 ≤ 𝑖, 𝑘 ≤ 𝑛 , 𝑑𝐻(𝑣𝑗

(𝑖)
, 𝑢) <

⌊
𝑒(𝑣𝑗

(𝑖)
)+𝑒(𝑢)

2
⌋  and 𝑑𝐻(𝑣1

(𝑖)
, 𝑢) < ⌊

𝑒(𝑣1
(𝑖)

)+𝑒(𝑢)

2
⌋  for 𝑢 ∈ 𝑉(𝐻3) , 2 ≤ 𝑗 ≤ 𝑟𝑖  and 1 ≤ 𝑖 ≤ 𝑛 , 

𝑑𝐻(𝑢, 𝑤) < ⌊
𝑒(𝑢)+𝑒(𝑤)

2
⌋  for every adjacent pairs of vertices 𝑢  and 𝑤  in 𝑉(𝐻3) . Hence 

𝐸(𝐴𝐸𝐹(𝐻))={𝑣𝑗
(𝑖)

𝑣𝑗′
(𝑘)

, 𝑣𝑗
(𝑖)

𝑣1
(𝑘)

: 2 ≤ 𝑗 ≤ 𝑟𝑖, 2 ≤ 𝑗′ ≤ 𝑟𝑘, 𝑖 ≠ 𝑘, 1 ≤ 𝑖, 𝑘 ≤ 𝑛} ∪ 𝐸(𝐻3)=𝐸(𝐺). 

Thus 𝐺  is a 𝐹 - average eccentric graph.                                                       

□ 

 

Corollary 2.3. If 𝐺 is a disconnected graph having a component of the form 𝐾𝑚,𝑛 − 𝑒 where 

𝑚 and 𝑛 are positive integers, then 𝐺 is a 𝐹- average eccentric graph. 

Proof. By taking 𝑝 = 2  in Theorem 2.2, the result follows.                                     

□   

 

Corollary 2.4. If 𝐺  is a disconnected graph having 𝑃4  as a component, then 𝐺  is a 𝐹 - 

average eccentric graph. 

Proof. Since 𝑃4 ≅ 𝐾2,2 − 𝑒 , by Corollary 2.3, the result follows.                                

□ 

   

Corollary 2.5. If 𝐺 is a disconnected graph having a component of the form 𝑆(𝐾𝑚), 𝑚 being 

a positive integer ≥ 3, then 𝐺 is a 𝐹- average eccentric graph. 

Proof. By taking 𝑛 = 𝑚  and 𝑟1 = 𝑟2 =. . . = 𝑟𝑚 = 2  in Theorem 2.2, the result follows.        

□     

 

Let 𝑉𝑖 = {𝑣1
(𝑖)

, 𝑣2
(𝑖)

, . . . , 𝑣𝑟𝑖

(𝑖)
} be the 𝑖𝑡ℎ  partition of 𝐾𝑟1,𝑟2,...,𝑟𝑛

 for 𝑖 = 1,2, . . . , 𝑛. By 

deleting all the edges between the successive 𝑚𝑖
𝑡ℎ  and 𝑚𝑖+1

𝑡ℎ  partitions of 𝐾𝑟1,𝑟2,...,𝑟𝑛
 in a 

cyclic manner, the resulting graph is denoted as 𝐾𝑟1,𝑟2,...,𝑟𝑛

(𝑚1,𝑚2,...,𝑚𝑙)
. That is, 𝐾𝑟1,𝑟2,...,𝑟𝑛

(𝑚1,𝑚2,...,𝑚𝑙)
=

𝐾𝑟1,𝑟2,...,𝑟𝑛
− {𝑣𝑗𝑡

(𝑚𝑡)
𝑣𝑗𝑡′

(𝑚𝑡+1)
: 𝑣𝑗𝑡′

(𝑚1)
= 𝑣𝑗𝑡′

(𝑚𝑙+1)
, 1 ≤ 𝑗𝑡 ≤ 𝑟𝑚𝑡

, 1 ≤ 𝑗𝑡′ ≤ 𝑟𝑚𝑡+1
, 1 ≤ 𝑡, 𝑡′ ≤ 𝑙}  for 

1 ≤ 𝑚𝑡 ≤ 𝑛, 2 ≤ 𝑙 ≤ 𝑛. In particular 𝐾𝑟1,𝑟2,...,𝑟𝑛

(1,2,...,𝑚)
=𝐾𝑟1,𝑟2,...,𝑟𝑛

− {𝑣𝑗
(𝑡)

𝑣𝑗′
(𝑡+1)

: 𝑣𝑗′
(1)

= 𝑣𝑗′
(𝑚+1)

, 1 ≤

𝑗 ≤ 𝑟𝑡, 1 ≤ 𝑗′ ≤ 𝑟𝑡+1, 1 ≤ 𝑡 ≤ 𝑚} for 2 ≤ 𝑚 ≤ 𝑛. Let 𝑣0, 𝑣1, . . . , 𝑣𝑚−1  be the vertices of a 

complete graph 𝐾𝑚, 𝑚 ≥ 3 and 𝑤𝑖, 0 ≤ 𝑖 ≤ 𝑚 − 1, be the duplicating vertices of 𝑣𝑖, 0 ≤
𝑖 ≤ 𝑚 − 1 respectively. Suppose that 𝑣𝑚+𝑖 = 𝑣𝑖, 0 ≤ 𝑖 ≤ 𝑚 − 1. Then the graph 𝑆(𝐾𝑚) −

{𝑣𝑖𝑣𝑖−1, 𝑣𝑖𝑣𝑖+1: 0 ≤ 𝑖 ≤ 𝑛} is denoted by 𝑆′(𝐾𝑚). That is, 𝑆′(𝐾𝑚) = 𝐾2,2,...,2
(1,2,...,𝑚)

  

   

Theorem 2.6. If 𝐺 is a disconnected graph having a component of the form 𝐾𝑟1,𝑟2,...,𝑟𝑛

(𝑚1,𝑚2,...,𝑚𝑙)
 for 

1 ≤ 𝑚𝑡, 𝑙 ≤ 𝑛, 1 ≤ 𝑡 ≤ 𝑙, 𝑛 ≥ 4 and at least one pair of positive numbers in {𝑚1, 𝑚2, . . . , 𝑚𝑙} 

is not equal, then 𝐺 is a 𝐹- average eccentric graph. 

Proof. In 𝐾𝑟1,𝑟2,...,𝑟𝑛

(𝑚1,𝑚2,...,𝑚𝑙)
, 𝑉𝑖 = {𝑣1

(𝑖)
, 𝑣2

(𝑖)
, . . . , 𝑣𝑟𝑖

(𝑖)
}  is the 𝑖𝑡ℎ  partition of 𝐾𝑟1,𝑟2,...,𝑟𝑛

 for 1 ≤

𝑖 ≤ 𝑛. Construct 𝐻 from 𝐺  as follows: Let 𝐻1  and 𝐻2  be two partitions of 𝐾𝑟1,𝑟2,...,𝑟𝑛

(𝑚1,𝑚2,...,𝑚𝑙)
 

where 𝑉(𝐻1) = {𝑣𝑗
(𝑖)

∈ 𝑉𝑖: 2 ≤ 𝑗 ≤ 𝑟𝑖, 1 ≤ 𝑖 ≤ 𝑛}  and 𝑉(𝐻2) = {𝑣1
(𝑖)

∈ 𝑉𝑖: 1 ≤ 𝑖 ≤ 𝑛} . Let 
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𝑉(𝐻3) = 𝑉(𝐺) − 𝑉(𝐾𝑟1,𝑟2,...,𝑟𝑛

(𝑚1,𝑚2,...,𝑚𝑙)
)  and 𝐸(𝐻) = {𝑣𝑗

(𝑖)
𝑣1

(𝑖)
, 𝑣1

(𝑚𝑡)
𝑣1

(𝑚𝑡+1)
: 𝑚𝑡 = 𝑚𝑡+𝑙 , 2 ≤ 𝑗 ≤

𝑟𝑖, 1 ≤ 𝑖, 𝑚𝑡 ≤ 𝑛, 1 ≤ 𝑡 ≤ 𝑙} ∪ {𝑣1
(𝑖)

𝑤: 𝑤 ∈ 𝑉(𝐻3),1 ≤ 𝑖 ≤ 𝑛} ∪ 𝐸(𝐺 − 𝐾𝑟1,𝑟2,...,𝑟𝑛

(𝑚1,𝑚2,...,𝑚𝑙)
) . For 

2 ≤ 𝑗 ≤ 𝑟𝑖 and 1 ≤ 𝑖 ≤ 𝑛, 𝑒(𝑣𝑗
(𝑖)

) = 4, 𝑒(𝑣1
(𝑖)

) = 3 and the eccentricities of the remaining 

vertices of 𝐻  are 2. Also 𝑑𝐻(𝑣𝑗
(𝑚𝑡)

, 𝑣𝑗′
(𝑘)

) = 4 , 𝑑𝐻(𝑣𝑗1

(𝑖)
, 𝑣𝑗′1

(𝑖′)
) = 4 , 𝑑𝐻(𝑣𝑗

(𝑚𝑡)
, 𝑣1

(𝑘)
) = 3 , 

𝑑𝐻(𝑣𝑗1

(𝑖)
, 𝑣1

(𝑖′)
) = 3 , 𝑑𝐻(𝑣𝑗

(𝑚𝑡)
, 𝑣𝑗′′

(𝑚𝑡+1)
) = 3 , 𝑑𝐻(𝑣𝑗2

(𝑠)
, 𝑣𝑗′2

(𝑠)
) = 2 , 𝑑𝐻(𝑣𝑗

(𝑚𝑡)
, 𝑣1

(𝑚𝑡+1)
) =

2, 𝑑𝐻(𝑣𝑗
(𝑠)

, 𝑣1
(𝑠)

)  = 1 , 𝑑𝐻(𝑣1
(𝑚𝑡)

, 𝑣1
(𝑚𝑡+1)

) = 1  and 𝑑𝐻(𝑣1
(𝑚𝑡)

, 𝑣1
(𝑘)

) = 2  for 2 ≤ 𝑗 ≤ 𝑟𝑚𝑡
, 

2 ≤ 𝑗′ ≤ 𝑟𝑘 , 2 ≤ 𝑗′′ ≤ 𝑟𝑚𝑡+1
, 2 ≤ 𝑗1 ≤ 𝑟𝑖 , 2 ≤ 𝑗′1 ≤ 𝑟𝑖′ , 𝑗2 ≠ 𝑗′2 , 2 ≤ 𝑗2, 𝑗′2 ≤ 𝑟𝑠 , 𝑚𝑡 =

𝑚𝑙+𝑡 , 𝑚0 = 𝑚𝑙 , 𝑘 ≠ 𝑚𝑡−1, 𝑚𝑡, 𝑚𝑡+1 ; 1 ≤ 𝑡 ≤ 𝑙 , 𝑖 ≠ 𝑖′ , 𝑖 ≠ 𝑚𝑡 ≠ 𝑖′  and 1 ≤

𝑖, 𝑖′, 𝑘, 𝑠, 𝑚𝑡 ≤ 𝑛, 𝑑𝐻(𝑣𝑗2

(𝑠)
, 𝑢) = 2 and 𝑑𝐻(𝑣1

(𝑠)
, 𝑢) = 1 for 𝑢 ∈ 𝑉(𝐻3),2 ≤ 𝑗2 ≤ 𝑟𝑠  and 1 ≤

𝑠 ≤ 𝑛 , 𝑑𝐻(𝑣, 𝑤) = 2  for every non adjacent pairs of vertices 𝑣  and 𝑤  in 𝑉(𝐻3) . This 

implies that 𝑑𝐻(𝑣𝑗
(𝑚𝑡)

, 𝑣𝑗′
(𝑘)

) = 4 = ⌊
𝑒(𝑣

𝑗
(𝑚𝑡)

)+𝑒(𝑣𝑗′
(𝑘)

)

2
⌋ , 𝑑𝐻(𝑣𝑗1

(𝑖)
, 𝑣𝑗′1

(𝑖′)
) = 4 = ⌊

𝑒(𝑣𝑗
(𝑖)

)+𝑒(𝑣𝑗′
(𝑖′)

)

2
⌋ , 

𝑑𝐻(𝑣𝑗
(𝑚𝑡)

, 𝑣1
(𝑘)

) = 3 = ⌊
𝑒(𝑣𝑗

(𝑚𝑡)
)+𝑒(𝑣1

(𝑘)
)

2
⌋ , 𝑑𝐻(𝑣𝑗1

(𝑖)
, 𝑣1

(𝑖′)
) = 3 = ⌊

𝑒(𝑣𝑗
(𝑖)

)+𝑒(𝑣1
(𝑖′)

)

2
⌋  for 2 ≤ 𝑗 ≤

𝑟𝑚𝑡
, 2 ≤ 𝑗′ ≤ 𝑟𝑘 , 2 ≤ 𝑗1 ≤ 𝑟𝑖 , 2 ≤ 𝑗′1 ≤ 𝑟𝑖′ , 𝑚𝑡 = 𝑚𝑙+𝑡 , 𝑚0 = 𝑚𝑙 , 𝑘 ≠ 𝑚𝑡−1, 𝑚𝑡, 𝑚𝑡+1 ; 

1 ≤ 𝑡 ≤ 𝑙 , 𝑖 ≠ 𝑖′ , 𝑖 ≠ 𝑚𝑡 ≠ 𝑖′  and 1 ≤ 𝑖, 𝑖′, 𝑘, 𝑚𝑡 ≤ 𝑛 , 𝑑𝐻(𝑣, 𝑤) = 2 = ⌊
𝑒(𝑣)+𝑒(𝑤)

2
⌋  for 

every non adjacent pairs of vertices 𝑢  and 𝑤  in 𝑉(𝐻3) . Also 𝑑𝐻(𝑣𝑗
(𝑚𝑡)

, 𝑣𝑗′′
(𝑚𝑡+1)

) = 3 <

⌊
𝑒(𝑣𝑗

(𝑚𝑡)
)+𝑒(𝑣𝑗′′

(𝑚𝑡+1)
)

2
⌋ , 𝑑𝐻(𝑣𝑗

(𝑚𝑡)
, 𝑣1

(𝑚𝑡+1)
) = 2 < ⌊

𝑒(𝑣𝑗
(𝑚𝑡)

)+𝑒(𝑣1
(𝑚𝑡+1)

)

2
⌋ , 𝑑𝐻(𝑣𝑗2

(𝑠)
, 𝑣1

(𝑠)
) = 1 <

⌊
𝑒(𝑣𝑗2

(𝑠)
)+𝑒(𝑣1

(𝑠)
)

2
⌋ , 𝑑𝐻(𝑣1

(𝑚𝑡)
, 𝑣1

(𝑘)
) = 2 < ⌊

𝑒(𝑣1
(𝑚𝑡)

)+𝑒(𝑣1
(𝑘)

)

2
⌋ , 𝑑𝐻(𝑣𝑗2

(𝑠)
, 𝑣𝑗′2

(𝑠)
) = 2 <

⌊
𝑒(𝑣𝑗2

(𝑠)
)+𝑒(𝑣𝑗′2

(𝑠)
)

2
⌋ , 𝑑𝐻(𝑣1

(𝑖)
, 𝑣1

(𝑖′)
) = 2 < ⌊

𝑒(𝑣1
(𝑖)

)+𝑒(𝑣1
(𝑖′)

)

2
⌋  and 𝑑𝐻(𝑣1

(𝑚𝑡)
, 𝑣1

(𝑚𝑡+1)
) = 1 <

⌊
𝑒(𝑣1

(𝑚𝑡)
)+𝑒(𝑣1

(𝑚𝑡+1)
)

2
⌋  for 2 ≤ 𝑗 ≤ 𝑟𝑚𝑡

, 2 ≤ 𝑗′ ≤ 𝑟𝑘 , 2 ≤ 𝑗′′ ≤ 𝑟𝑚𝑡+1
, 2 ≤ 𝑗1 ≤ 𝑟𝑖 , 2 ≤ 𝑗′1 ≤

𝑟𝑖′, 𝑗2 ≠ 𝑗′2, 2 ≤ 𝑗2, 𝑗′2 ≤ 𝑟𝑠, 𝑚𝑡 = 𝑚𝑙+𝑡, 𝑚0 = 𝑚𝑙 , 𝑘 ≠ 𝑚𝑡−1, 𝑚𝑡, 𝑚𝑡+1; 1 ≤ 𝑡 ≤ 𝑙, 𝑖 ≠ 𝑖′, 

𝑖 ≠ 𝑚𝑡 ≠ 𝑖′  and 1 ≤ 𝑖, 𝑖′, 𝑘, 𝑠, 𝑚𝑡 ≤ 𝑛 , 𝑑𝐻(𝑣𝑗2

(𝑠)
, 𝑢) = 2 < ⌊

𝑒(𝑣𝑗2

(𝑠)
)+𝑒(𝑢)

2
⌋  and 𝑑𝐻(𝑣1

(𝑠)
, 𝑢) =

1 < ⌊
𝑒(𝑣1

(𝑠)
)+𝑒(𝑢)

2
⌋  for 𝑢 ∈ 𝑉(𝐻3),2 ≤ 𝑗2 ≤ 𝑟𝑠  and 1 ≤ 𝑠 ≤ 𝑛 , 𝑑𝐻(𝑣, 𝑤) = 1 < ⌊

𝑒(𝑣)+𝑒(𝑤)

2
⌋ 

for every adjacent pairs of vertices 𝑣  and 𝑤  in 𝑉(𝐻3) . Hence 

𝐸(𝐴𝐸𝐹(𝐻)) = {𝑣𝑗
(𝑚𝑡)

𝑣𝑗′
(𝑘)

, 𝑣𝑗1

(𝑖)
𝑣𝑗′1

(𝑖′)
, 𝑣𝑗

(𝑚𝑡)
𝑣1

(𝑘)
, 𝑣𝑗1

(𝑖)
𝑣1

(𝑖′)
: 2 ≤ 𝑗 ≤ 𝑟𝑚𝑡

, 2 ≤ 𝑗′ ≤ 𝑟𝑘, 2 ≤ 𝑗1 ≤

𝑟𝑖, 2 ≤ 𝑗′1 ≤ 𝑟𝑖′, 𝑚𝑡 = 𝑚𝑙+𝑡, 𝑚0 = 𝑚𝑙, 𝑘 ≠ 𝑚𝑡−1, 𝑚𝑡, 𝑚𝑡+1, 1 ≤ 𝑡 ≤ 𝑙, 𝑖 ≠ 𝑖′, 𝑖 ≠ 𝑚𝑡 ≠

𝑖′, 1 ≤ 𝑖, 𝑖′, 𝑘, 𝑠, 𝑚𝑡 ≤ 𝑛} ∪ 𝐸(𝐻3) = 𝐸(𝐺) . Thus 𝐺  is a 𝐹 - average eccentric graph.                     

□   

 

Corollary 2.7. If 𝐺 is a disconnected graph having a component of the form 𝐾𝑟1,𝑟2,...,𝑟𝑛

(1,2,...,(𝑚−1),𝑚)
 

for 1 ≤ 𝑚 ≤ 𝑛 and 𝑛 ≥ 4, then 𝐺 is a 𝐹-average eccentric graph. 

 

Corollary 2.8. If 𝐺 is a disconnected graph having a component of the form 𝑆′(𝐾𝑚), 𝑚 being 
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a positive integer ≥ 4, then 𝐺 is a 𝐹- average eccentric graph. 

 

Theorem 2.9. If 𝐺 is (𝑛 − 𝑟)𝐾1 ∪ 𝐺1 on 𝑛 vertices where 𝑟(𝐺1) = 1 and 1 ≤ 𝑟 ≤ 𝑛 − 1, 

then 𝐺 is not a 𝐹-average eccentric graph. 

Proof. Suppose 𝑟(𝐺1) = 1  and 𝑑(𝐺1) = 2 . Let 𝑢1, 𝑢2, . . . , 𝑢𝑙  be the full degree vertices, 

𝑢𝑙+1, 𝑢𝑙+2, . . . , 𝑢𝑟 be the non full degree vertices in 𝐺1 and 𝑢𝑟+1, 𝑢𝑟+2, . . . , 𝑢𝑛 be the isolated 

vertices in 𝐺. Suppose there exists a graph 𝐻 such that 𝐴𝐸𝐹(𝐻) = 𝐺. If 𝐻 is disconnected, 

then each component of 𝐴𝐸𝐹(𝐻) is complete, a contradiction to 𝐺 ∈ 𝐹12. So 𝐻 is connected. 

By the definition, each of 𝑢𝑟+1, 𝑢𝑟+2, . . . , 𝑢𝑛 has no 𝐹- average eccentric vertices in 𝐻. If 𝐻 

has a full degree vertex, then by Theorem A, 𝐴𝐸𝐹(𝐻) has a full degree vertex, a contradiction. 

So 𝑟(𝐻) ≥ 2 . If 𝑒(𝑢𝑗) = 𝑑(𝐻)  for 𝑟 + 1 ≤ 𝑗 ≤ 𝑛 , then 𝑢𝑗  is not an isolated vertex in 

𝐴𝐸𝐹(𝐻) , a contradiction. Therefore 1 < 𝑒(𝑢𝑗) < 𝑑(𝐻)  for 𝑟 + 1 ≤ 𝑗 ≤ 𝑛  and hence 

𝑒(𝑢𝑖) = 𝑑(𝐻) for some 𝑖 = 1,2, . . . , 𝑟. 

Case 1. Suppose 𝑒(𝑢𝑖) = 𝑑(𝐻) = 𝑀  for some 𝑖, 1 ≤ 𝑖 ≤ 𝑙 . Since 𝑢𝑖  is adjacent to 

𝑢1, 𝑢2, . . . , 𝑢𝑖−1, 𝑢𝑖+1, . . . , 𝑢𝑙  in 𝐴𝐸𝐹(𝐻) , any one in {𝑢1, 𝑢2, . . . , 𝑢𝑖−1,  𝑢𝑖+1, . . . , 𝑢𝑙}  is the 

antipodal vertex of 𝑢𝑖 in 𝐻. 

Case 1.1. Suppose 𝑑𝐻(𝑢𝑖, 𝑢𝑖+1) = 𝑀. Let 𝑢𝑖𝑥1𝑥2. . . . 𝑥𝑚−1𝑢𝑖+1 be a diameteral path between 

𝑢𝑖  and 𝑢𝑖+1  in 𝐻 . Then 𝑒(𝑢𝑖+1) = 𝑀 . Since 𝑢𝑖𝑢𝑘 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) for 𝑖 ≠ 𝑘, 𝑖 = 1,2, . . . , 𝑙 
and 𝑘 = 1,2, . . . , 𝑙, 𝑙 + 1, . . . , 𝑟, 𝑥ℎ ∈ {𝑢1, 𝑢2, . . . , 𝑢𝑟} for ℎ = 1,2, . . . , 𝑚 − 1. Therefore 𝑥ℎ ∈
{𝑢𝑟+1, 𝑢𝑟+2, . . . , 𝑢𝑛} for 𝑘 = 1,2, . . . , 𝑚 − 1. If 𝑥𝑚−1 = 𝑢𝑗  and 𝑒(𝑢𝑗) = 𝑀 − 1 for 𝑟 + 1 ≤

𝑗 ≤ 𝑛, then 𝑢𝑖𝑢𝑗 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), a contradiction. Hence 𝑥𝑚−1 ∈ 𝑉(𝐻), a contradiction. 

Case 1.2. Suppose 𝑑𝐻(𝑢𝑖, 𝑢𝑙+1) = 𝑀. Let 𝑢𝑖𝑦1𝑦2. . . . 𝑦𝑚−1𝑢𝑙+1 be a diameteral path between 

𝑢𝑖  and 𝑢𝑙+1  in 𝐻 . Then 𝑒(𝑢𝑙+1) = 𝑀 . Since 𝑢𝑖𝑢𝑘 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) for 𝑖 ≠ 𝑘, 𝑖 = 1,2, . . . , 𝑙 
and 𝑘 = 1,2, . . . , 𝑙, 𝑙 + 1, . . . , 𝑟, 𝑦ℎ ∈ {𝑢1, 𝑢2, . . . , 𝑢𝑙} for ℎ = 1,2, . . . , 𝑚 − 1. Therefore 𝑦ℎ ∈
𝑉(𝐻) − {𝑢1, 𝑢2, . . . , 𝑢𝑙}  for ℎ = 1,2, . . . , 𝑚 − 1 . Let 𝑦𝑚−1 = 𝑢𝑘1

 and 𝑒(𝑢𝑘1
) = 𝑀 − 1  for 

some 𝑘1 = 𝑙 + 2, 𝑙 + 3, . . . , 𝑟 . Since 𝑢𝑙+1𝑢𝑘1
∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑦𝑚−1 ∈ 𝑉(𝐻) −

{𝑢1, 𝑢2, . . . , 𝑢𝑟}. Hence 𝑢𝑖𝑦𝑚−1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), a contradiction to the fact that 𝑦𝑚−1  is an 

isolated vertex in 𝐴𝐸𝐹(𝐻). 

Case 2. Suppose 𝑒(𝑢𝑘) = 𝑑(𝐻) = 𝑀  for 𝑙 + 1 ≤ 𝑘 ≤ 𝑟 . Since 𝑢𝑘  is adjacent to 

𝑢1, 𝑢2, . . . , 𝑢𝑙  and 𝑢𝑘′  for some 𝑘′ = 𝑙 + 1, 𝑙 + 2, . . . , 𝑟 , any one in 

{𝑢1, 𝑢2, . . . , 𝑢𝑙, 𝑢𝑙+1, . . . , 𝑢𝑘 , 𝑢𝑘+1, . . . , 𝑢𝑟}  is the antipodal vertex of 𝑢𝑘  in 𝐻 . Suppose 

𝑑𝐻(𝑢𝑘, 𝑢𝑘+1) = 𝑀  and 𝑢𝑘𝑧1𝑧2. . . 𝑧𝑚−1𝑢𝑘+1  is a diameteral path between 𝑢𝑘  and 𝑢𝑘+1  in 

𝐻. Then 𝑒(𝑢𝑘+1) = 𝑀. Since 𝑢𝑖𝑢𝑘 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) for 𝑖 = 1,2, . . . , 𝑙, 𝑧ℎ ∈ {𝑢1, 𝑢2, . . . , 𝑢𝑙} for 

ℎ = 1,2, . . . , 𝑚 − 1 . Therefore 𝑧ℎ ∈ 𝑉(𝐻) − {𝑢1, 𝑢2, . . . , 𝑢𝑙} . Suppose 𝑧𝑚−1 = 𝑢𝑘′  and 

𝑒(𝑢𝑘′) = 𝑀 − 1  for 𝑘′ = 𝑙 + 1, 𝑙 + 2, . . . , 𝑟 . Since 𝑢𝑖𝑢𝑘′  and 𝑢𝑖𝑢𝑘 ∈ 𝐸(𝐴𝐸𝐹(𝐻))  for 𝑖 =
1,2, . . . , 𝑙 , 𝑢𝑖𝑧ℎ′ ∈ 𝐸(𝐴𝐸𝐹(𝐻))  for ℎ′ = 2,3, . . . , 𝑚 − 2 , a contradiction. If 𝑧ℎ ∈ 𝑉(𝐻) −
{𝑢1, 𝑢2, . . . , 𝑢𝑟}, then 𝑧ℎ = 𝑢𝑗  for some 𝑗 = 𝑟, 𝑟 + 1, . . . , 𝑛 and hence 𝑢𝑘𝑢𝑗 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), a 

contradiction to the fact that 𝑢𝑘′ is an isolated vertex in 𝐴𝐸𝐹(𝐻). Thus 𝐴𝐸𝐹(𝐻) is not equal 

to 𝐺, a contradiction. 

 

Suppose 𝑟(𝐺1) = 1 and 𝑑(𝐺1) = 1. Then 𝑢1, 𝑢2, . . . , 𝑢𝑟 are the full degree vertices of 

𝐺1. Suppose there exists a graph 𝐻 such that 𝐴𝐸𝐹(𝐻) = 𝐺. If 𝐻 is disconnected, then each 

component of 𝐴𝐸𝐹(𝐻) is complete, a contradiction to 𝐺 ∈ 𝐹12. So 𝐻 must be connected. By 

the definition, each of 𝑢𝑟+1, 𝑢𝑟+2, . . . , 𝑢𝑛 has no 𝐹- average eccentric vertices in 𝐻. If 𝐻 has 

a full degree vertex, then by Theorem A, 𝐴𝐸𝐹(𝐻) has a full degree vertex, a contradiction. So 

𝑟(𝐻) ≥ 2. If 𝑒(𝑢𝑗) = 𝑑(𝐻) for some 𝑗, 𝑟 + 1 ≤ 𝑗 ≤ 𝑛, then 𝑢𝑗  is not an isolated vertex in 
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𝐴𝐸𝐹(𝐻) , a contradiction. Therefore 1 < 𝑒(𝑢𝑗) < 𝑑(𝐻)  for 𝑟 + 1 ≤ 𝑗 ≤ 𝑛  and hence 

𝑒(𝑢𝑖) = 𝑑(𝐻)  for some 𝑖 = 1,2, . . . , 𝑟 . Let 𝑒(𝑢𝑖) = 𝑑(𝐻) = 𝑀 . Since 𝑢𝑖  is adjacent to 

𝑢1, 𝑢2, . . . , 𝑢𝑖−1, 𝑢𝑖+1, . . . , 𝑢𝑟  in 𝐴𝐸𝐹(𝐻) , any one in {𝑢1, 𝑢2, . . . , 𝑢𝑖−1, 𝑢𝑖+1, . . . , 𝑢𝑟}  is the 

antipodal vertex of 𝑢𝑖  in 𝐻 . Suppose 𝑑𝐻(𝑢𝑖, 𝑢𝑖+1) = 𝑀  and 𝑢𝑖𝑥1𝑥2. . . 𝑥𝑚−1𝑢𝑖+1  is a 

diameteral path between 𝑢𝑖 and 𝑢𝑖+1. Then 𝑒(𝑢𝑖+1) = 𝑀. Since 𝑢𝑖𝑢𝑘 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) for 𝑖 ≠
𝑘, 1 ≤ 𝑖, 𝑘 ≤ 𝑟 , 𝑥ℎ ∈ {𝑢1, 𝑢2, . . . , 𝑢𝑟}  for ℎ = 1,2, . . . , 𝑚 − 1 . Therefore 𝑥ℎ ∈
{𝑢𝑟+1, 𝑢𝑟+2, . . . , 𝑢𝑛}  for ℎ = 1,2, . . . , 𝑚 − 1 . Hence 𝑢𝑖𝑥𝑚−1, 𝑥1𝑢𝑖+1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , a 

contradiction to the fact that 𝑥1 and 𝑥𝑚−1 are isolated vertices in 𝐴𝐸𝐹(𝐻). Thus 𝐴𝐸𝐹(𝐻) is 

not equal to 𝐺, a contradiction.        □          

   

Theorem 2.10. Let 𝐺 = 𝑟𝐾1 ∪ 𝐺∗ ∪ 𝐺1 ∪ 𝐺2 ∪. . .∪ 𝐺𝑝 be a disconnected graph such that 𝑟 ≥

1, 𝐺∗ is a square free component having a cycle of length |𝐺∗| = 𝑡 ≥ 3 and each 𝐺𝑖 is also a 

square free component and non isomorphic to 𝑃4 for 1 ≤ 𝑖 ≤ 𝑝. Then 𝐺 is not a 𝐹-average 

eccentric graph. 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑟  be the isolated vertices, 𝑣𝑟+1, 𝑣𝑟+2, . . . , 𝑣𝑟+𝑡  be the vertices of 𝐺∗ 

and 𝑣𝑟+𝑡+𝑟𝑖−1+1, 𝑣𝑟+𝑡+𝑟𝑖−1+2, . . . , 𝑣𝑟+𝑡+𝑟𝑖
 be the vertices of the component 𝐺𝑖 , 1 ≤ 𝑖 ≤ 𝑝 

where 𝑟0 = 0. Suppose there exists a graph 𝐻 such that 𝐴𝐸𝐹(𝐻) = 𝐺. If 𝐻 is disconnected, 

then each component of 𝐴𝐸𝐹(𝐻) is complete, a contradiction to 𝐺 ∈ 𝐹12. So 𝐻 is connected. 

By the definition, each of 𝑣1, 𝑣2, . . . , 𝑣𝑟 has no 𝐹- average eccentric vertices in 𝐻. If 𝐻 has a 

full degree vertex, then by Theorem A, 𝐴𝐸𝐹(𝐻) has a full degree vertex, a contradiction. So 

𝑟(𝐻) ≥ 2. 

Case 1. 𝑡 ≥ 5. Since 𝑣𝑟+𝑖 and 𝑣𝑟+𝑖+1 are adjacent in 𝐴𝐸𝐹(𝐻) for 1 ≤ 𝑖 ≤ 𝑡 − 1, there is a 

shortest path between 𝑣𝑟+𝑖 and 𝑣𝑟+𝑖+1 in 𝐻 of length ⌊
𝑒(𝑣𝑟+𝑖)+𝑒(𝑣𝑟+𝑖+1)

2
⌋. 

Case 1.1. Suppose 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑣𝑟+𝑖+1)  is even and 
𝑒(𝑣𝑟+𝑖)+𝑒(𝑣𝑟+𝑖+1)

2
= 𝑀 . If 𝑒(𝑣𝑟+𝑖) ≠

𝑒(𝑣𝑟+𝑖+1) , then 𝑑𝐻(𝑣𝑟+𝑖, 𝑣𝑟+𝑖+1) < 𝑀 . So 𝑒(𝑣𝑟+𝑖) = 𝑀 = 𝑒(𝑣𝑟+𝑖+1) . Let 

𝑃1: 𝑣𝑟+𝑖𝑥1𝑥2. . . 𝑥𝑚−1𝑣𝑟+𝑖+1 be a shortest path between 𝑣𝑟+𝑖 and 𝑣𝑟+𝑖+1 in 𝐻 of length 𝑀. 

Suppose 𝑣𝑟+𝑖  and 𝑣𝑟+𝑘  are adjacent in 𝐴𝐸𝐹(𝐻)  for 𝑘 = 𝑖 + 2, 𝑖 + 4, 𝑖 + 5, . . . , 𝑡 . Since 

𝑣𝑟+𝑖𝑣𝑟+𝑘 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑘 ≠ 𝑣𝑟+𝑖+1  and 𝑣𝑟+𝑘 ≠ 𝑥1 . So 𝑣𝑟+𝑘 = 𝑥𝑚−1 . Since 

𝑣𝑟+𝑖+1𝑣𝑟+𝑖+2 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑖+2 ≠ 𝑣𝑟+𝑖  and 𝑣𝑟+𝑖+2 ≠ 𝑥𝑚−1 . So 𝑣𝑟+𝑖+2 = 𝑥1  and 

𝑒(𝑣𝑟+𝑖+2) = 𝑀 − 1. Then 𝑣𝑟+𝑖+3 is a vertex in 𝑉(𝐻) − {𝑣𝑟+𝑖, 𝑥1, 𝑥2, . . . , 𝑥𝑚−1, 𝑣𝑟+𝑖+1}. If 

𝑣𝑟+𝑖+3 ∈ {𝑣1, 𝑣2, . . . , 𝑣𝑟}, then any one of 𝑣1, 𝑣2, . . . , 𝑣𝑟 is not an isolated vertex in 𝐴𝐸𝐹(𝐻) 

which is impossible. If 𝑣𝑟+𝑖+3 = 𝑣𝑟+𝑡+𝑟𝑘−1+𝑗 ∈ 𝑉(𝐺𝑘) for some 𝑘  and 𝑗 , 1 ≤ 𝑗 ≤ 𝑟𝑘  and 

1 ≤ 𝑘 ≤ 𝑝 , then 𝑣𝑟+𝑖+3𝑣𝑟+𝑡+𝑟𝑘−1+𝑗 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , a contradiction. So 𝑣𝑟+𝑖+3 ∈

{𝑣𝑟+1, 𝑣𝑟+2, . . . , 𝑣𝑟+𝑡} − {𝑣𝑟+𝑖, 𝑥1,  𝑥2, . . . , 𝑥𝑚−1, 𝑣𝑟+𝑖+1} . Then 𝑑𝐻(𝑣𝑟+𝑖, 𝑣𝑟+𝑖+3) = 𝑀  and 

hence 𝑣𝑟+𝑖𝑣𝑟+𝑖+3 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) . Hence 𝑣𝑟+𝑖𝑣𝑟+𝑖+1𝑣𝑟+𝑖+2𝑣𝑟+𝑖+3𝑣𝑟+𝑖  is a cycle 𝐶4  in 

𝐴𝐸𝐹(𝐻), a contradiction. 

Case 1.2. Suppose 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑣𝑟+𝑖+1)  is odd and ⌊
𝑒(𝑣𝑟+𝑖)+𝑒(𝑣𝑟+𝑖+1)

2
⌋ = 𝑀 − 1 . Then the 

eccentricity of any one of 𝑣𝑟+𝑖  and 𝑣𝑟+𝑖+1  is 𝑀 − 1 . Let 𝑒(𝑣𝑟+𝑖+1) = 𝑀 − 1 . Then 

𝑑𝐻(𝑣𝑟+𝑖, 𝑣𝑟+𝑖+1) = 𝑀 − 1 and 𝑒(𝑣𝑟+𝑖) = 𝑀. So 𝑣𝑟+𝑖 is adjacent to atleast one vertex 𝑣𝑟+𝑗 

in 𝐴𝐸𝐹(𝐻)  for some 𝑗 , 𝑗 = 𝑖 + 2, 𝑖 + 4, 𝑖 + 5, . . . , 𝑡  whose eccentricity is 𝑀 . Let 

𝑃2: 𝑣𝑟+𝑖𝑤1𝑤2. . . 𝑤𝑚−1𝑣𝑟+𝑗 be a shortest path between 𝑣𝑟+𝑖 and 𝑣𝑟+𝑗 in 𝐻 of length 𝑀. If 

𝑣𝑟+𝑗 = 𝑣𝑟+𝑖+2, then 𝑣𝑟+𝑖𝑣𝑟+𝑖+2 ∈ 𝐸(𝐴𝐸𝐹(𝐻)). Since 𝑣𝑟+𝑖+1𝑣𝑟+𝑖+2 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), 𝑣𝑟+𝑖+1 ≠

𝑤𝑚−1  and 𝑣𝑟+𝑖+1 ≠ 𝑣𝑟+𝑖 . So 𝑣𝑟+𝑖+1 = 𝑤1  and 𝑣𝑟+𝑖𝑣𝑟+𝑖+1 ∈ 𝐸(𝐻) , a contradiction to 

𝑣𝑟+𝑖𝑣𝑟+𝑖+1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) . Assume that 𝑖 + 4 ≤ 𝑗 ≤ 𝑡 . Since 𝑣𝑟+𝑗−1𝑣𝑟+𝑗 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 
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𝑣𝑟+𝑗−1 ≠ 𝑣𝑟+𝑖  and 𝑣𝑟+𝑗−1 ≠ 𝑤𝑚−1 . So 𝑣𝑟+𝑗−1 = 𝑤1  and 𝑒(𝑣𝑟+𝑗−1) = 𝑀 − 1 . Since 

𝑣𝑟+𝑖𝑣𝑟+𝑖+1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑖+1 ≠ 𝑣𝑟+𝑗  and 𝑣𝑟+𝑖+1 ≠ 𝑤1 . So 𝑣𝑟+𝑖+1 = 𝑤𝑚−1  and 

𝑒(𝑣𝑟+𝑖+1) = 𝑀 − 1 . Since 𝑣𝑟+𝑖+1𝑣𝑟+𝑖+2 ∈ 𝐸(𝐴𝐸𝐹(𝐻))  and 𝑣𝑟+𝑖+1𝑣𝑟+𝑗 ∈ 𝐸(𝐻) , 

𝑒(𝑣𝑟+𝑖+2) = 𝑀 . This implies that 𝑑𝐻(𝑣𝑟+𝑖+2, 𝑣𝑟+𝑗) = 𝑑𝐻(𝑣𝑟+𝑖+2, 𝑣𝑟+𝑖+1) 

+𝑑𝐻(𝑣𝑟+𝑖+1, 𝑣𝑟+𝑗) = ⌊
𝑒(𝑣𝑟+𝑖+2)+𝑒(𝑣𝑟+𝑖+1)

2
⌋ + 1 = 𝑀 . So 𝑣𝑟+𝑖+2𝑣𝑟+𝑗 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) . Hence 

𝑣𝑟+𝑖 𝑣𝑟+𝑖+1𝑣𝑟+𝑖+2𝑣𝑟+𝑗𝑣𝑟+𝑖 is a cycle 𝐶4 in 𝐴𝐸𝐹(𝐻), a contradiction. If 𝑒(𝑣𝑟+𝑖) = 𝑀 − 1, 

then 𝑑𝐻(𝑣𝑟+𝑖, 𝑣𝑟+𝑖+1) = 𝑀 − 1  and 𝑒(𝑣𝑟+𝑖+1) = 𝑀 . So 𝑣𝑟+𝑖+1  is adjacent to atleast one 

vertex 𝑣𝑟+𝑘  in 𝐴𝐸𝐹(𝐻) for some 𝑘, 𝑘 = 𝑖 + 3, 𝑖 + 5, 𝑖 + 6, . . . , 𝑡 whose eccentricity is 𝑀. 

Let 𝑃3: 𝑣𝑟+𝑖+1𝑦1𝑦2. . . 𝑦𝑚−1𝑣𝑟+𝑘 be a shortest path between 𝑣𝑟+𝑖+1 and 𝑣𝑟+𝑘 in 𝐻 of length 

𝑀. If 𝑣𝑟+𝑘 = 𝑣𝑟+𝑖+3, then 𝑣𝑟+𝑖+1𝑣𝑟+𝑖+3 ∈ 𝐸(𝐴𝐸𝐹(𝐻)). Since 𝑣𝑟+𝑖+2𝑣𝑟+𝑖+3 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), 

𝑣𝑟+𝑖+2 ≠ 𝑦𝑚−1  and 𝑣𝑟+𝑖+2 ≠ 𝑣𝑟+𝑖+1 . So 𝑣𝑟+𝑖+2 = 𝑦1  and 𝑣𝑟+𝑖+1𝑣𝑟+𝑖+2 ∈ 𝐸(𝐻) , a 

contradiction to 𝑣𝑟+𝑖+1𝑣𝑟+𝑖+2 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) . Assume that 𝑖 + 5 ≤ 𝑘 ≤ 𝑡 . Since 

𝑣𝑟+𝑘−1𝑣𝑟+𝑘 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑘−1 ≠ 𝑣𝑟+𝑖+1  and 𝑣𝑟+𝑘−1 ≠ 𝑦𝑚−1 . So 𝑣𝑟+𝑘−1 = 𝑦1  and 

𝑒(𝑣𝑟+𝑗−1) = 𝑀 − 1 . Since 𝑣𝑟+𝑖+1𝑣𝑟+𝑖+2 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑖+2 ≠ 𝑣𝑟+𝑘  and 𝑣𝑟+𝑖+2 ≠ 𝑦1 . 

So 𝑣𝑟+𝑖+2 = 𝑦𝑚−1  and 𝑒(𝑣𝑟+𝑖+2) = 𝑀 − 1 . Since 𝑣𝑟+𝑖+2𝑣𝑟+𝑖+3 ∈ 𝐸(𝐴𝐸𝐹(𝐻))  and 

𝑣𝑟+𝑖+2𝑣𝑟+𝑘 ∈ 𝐸(𝐻) , 𝑒(𝑣𝑟+𝑖+3) = 𝑀 . This implies that 𝑑𝐻(𝑣𝑟+𝑖+3, 𝑣𝑟+𝑘) =

𝑑𝐻(𝑣𝑟+𝑖+3, 𝑣𝑟+𝑖+2)  +𝑑𝐻(𝑣𝑟+𝑖+2, 𝑣𝑟+𝑘)  = ⌊
𝑒(𝑣𝑟+𝑖+3)+𝑒(𝑣𝑟+𝑖+2)

2
⌋ + 1 = 𝑀 . So 𝑣𝑟+𝑖+3𝑣𝑟+𝑘 ∈

𝐸(𝐴𝐸𝐹(𝐻)) . Hence 𝑣𝑟+𝑖+1𝑣𝑟+𝑖+2𝑣𝑟+𝑖+3𝑣𝑟+𝑘𝑣𝑟+𝑖+1  is a cycle 𝐶4  in 𝐴𝐸𝐹(𝐻) , a 

contradiction. 

Case 2. 𝑡 = 3. In this case, 𝑣𝑟+𝑖𝑣𝑟+𝑖+1𝑣𝑟+𝑖+2 is a triangle in 𝐴𝐸𝐹(𝐻) where 𝑣𝑟+𝑖+3 = 𝑣𝑟+𝑖 

for 1 ≤ 𝑖 ≤ 3. Since 𝑣𝑟+𝑖𝑣𝑟+𝑖+1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), there is a shortest path between 𝑣𝑟+𝑖  and 

𝑣𝑟+𝑖+1 in 𝐻 of length ⌊
𝑒(𝑣𝑟+𝑖)+𝑒(𝑣𝑟+𝑖+1)

2
⌋. 

Case 2.1. Suppose 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑣𝑟+𝑖+1) is even and ⌊
𝑒(𝑣𝑟+𝑖)+𝑒(𝑣𝑟+𝑖+1)

2
⌋ = 𝑀 . If 𝑒(𝑣𝑟+𝑖) ≠

𝑒(𝑣𝑟+𝑖+1) , then 𝑑𝐻(𝑣𝑟+𝑖, 𝑣𝑟+𝑖+1) < 𝑀 . So 𝑒(𝑣𝑟+𝑖) = 𝑀 = 𝑒(𝑣𝑟+𝑖+1) . Let 

𝑃4: 𝑣𝑟+𝑖𝑤1𝑤2. . . 𝑤𝑚−1𝑣𝑟+𝑖+1 be a shortest path between 𝑣𝑟+𝑖 and 𝑣𝑟+𝑖+1 in 𝐻 of length 𝑀. 

Since 𝑣𝑟+𝑖+1𝑣𝑟+𝑖+2 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑖+2 ≠ 𝑣𝑟+𝑖  and 𝑣𝑟+𝑖+2 ≠ 𝑤𝑚−1 . So 𝑣𝑟+𝑖+2 = 𝑤1 

and 𝑣𝑟+𝑖𝑣𝑟+𝑖+2 ∈ 𝐸(𝐻), a contradiction to 𝑣𝑟+𝑖𝑣𝑟+𝑖+2 ∈ 𝐸(𝐴𝐸𝐹(𝐻)). 

Case 2.2. Suppose 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑣𝑟+𝑖+1) is odd and ⌊
𝑒(𝑣𝑟+𝑖)+𝑒(𝑣𝑟+𝑖+1)

2
⌋ = 𝑀 − 1. In this case, 

the eccentricity of any one of 𝑣𝑟+𝑖, 𝑣𝑟+𝑖+1  is 𝑀 − 1 . Let 𝑒(𝑣𝑟+𝑖) = 𝑀 − 1 . Then 

𝑒(𝑣𝑟+𝑖+1) = 𝑀  and 𝑒(𝑣𝑟+𝑖+2) = 𝑀 . Let 𝑃5: 𝑣𝑟+𝑖+2𝑤′1𝑤′2. . . 𝑤′𝑖𝑤𝑖+1. . . 𝑤𝑚−1𝑣𝑟+𝑖+1  be a 

shortest path between 𝑣𝑟+𝑖+2  and 𝑣𝑟+𝑖+1  in 𝐻  of length 𝑀 . Since 𝑣𝑟+𝑖𝑣𝑟+𝑖+1 ∈
𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑖 ≠ 𝑣𝑟+𝑖+2  and 𝑣𝑟+𝑖 ≠ 𝑤𝑚−1 . So 𝑣𝑟+𝑖 = 𝑤′1  and 𝑣𝑟+𝑖+2𝑣𝑟+𝑖 ∈ 𝐸(𝐻) , a 

contradiction to 𝑣𝑟+𝑖+2𝑣𝑟+𝑖 ∈ 𝐸(𝐴𝐸𝐹(𝐻)). Suppose 𝑒(𝑣𝑟+𝑖+1) = 𝑀 − 1. Then 𝑒(𝑣𝑟+𝑖) = 𝑀 

and hence 𝑒(𝑣𝑟+𝑖+2) = 𝑀 . As in Case 2.1, 𝐴𝐸𝐹(𝐻)  is not equal to 𝐺 , a contradiction.                                           

□ 

 

Theorem 2.11. Let 𝐺 = 𝑟𝐾1 ∪ 𝐾𝑡1,𝑡2,...,𝑡𝑛
∪ 𝐺1 ∪ 𝐺2 ∪. . .∪ 𝐺𝑝 be a disconnected such that 𝑟 

and 𝑡𝑖 being postive integers, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 2 and each 𝐺𝑗 is a square free component and 

non isomorphic to 𝑃4 for 1 ≤ 𝑗 ≤ 𝑝. Then 𝐺 is not a 𝐹-average eccentric graph. 

Proof. Assume that 𝑡1 + 𝑡2+. . . +𝑡𝑛 = 𝑡. Let 𝑣1, 𝑣2, . . . , 𝑣𝑟 be the isolated vertices of 𝐺, 𝑉𝑖 =

{𝑣1
(𝑖)

, 𝑣2
(𝑖)

, . . . , 𝑣𝑟𝑖

(𝑖)
}  be the 𝑖𝑡ℎ  partition of 𝐾𝑡1,𝑡2,...,𝑡𝑛

 for 1 ≤ 𝑖 ≤ 𝑛 , and 

𝑣𝑟+𝑡+𝑟𝑗−1+1, 𝑣𝑟+𝑡+𝑟𝑗−1+2, . . .,  𝑣𝑟+𝑡+𝑟𝑗
 be the vertices of the component 𝐺𝑗  for 1 ≤ 𝑗 ≤ 𝑝 

where 𝑟0 = 0. Suppose there exists a graph 𝐻 such that 𝐴𝐸𝐹(𝐻) = 𝐺. If 𝐻 is disconnected, 



International Journal of Aquatic Science  

ISSN: 2008-8019 

Vol 12, Issue 02, 2021 

 

 

2506 
 

then each component of 𝐴𝐸𝐹(𝐻) is complete, a contradiction to 𝐺 ∈ 𝐹12. So 𝐻 is connected. 

By the definition, each of 𝑣1, 𝑣2, . . . , 𝑣𝑟 has no 𝐹- average eccentric vertices in 𝐻. If 𝐻 has a 

full degree vertex, then by Theorem A, 𝐴𝐸𝐹(𝐻) has a full degree vertex, a contradiction. So 

𝑟(𝐻) ≥ 2. Since 𝑣𝑡ℎ1

(𝑖)
 and 𝑣𝑡ℎ2

(𝑗)
 are adjacent in 𝐴𝐸𝐹(𝐻) for 1 ≤ ℎ1 ≤ 𝑡𝑖, 1 ≤ ℎ2 ≤ 𝑡𝑗 , 𝑖 ≠ 𝑗 

and 1 ≤ 𝑖, 𝑗 ≤ 𝑛 , there is a shortest path between 𝑣𝑡ℎ1

(𝑖)
 and 𝑣𝑡ℎ2

(𝑗)
 in 𝐻  of length 

⌊
𝑒(𝑣𝑡ℎ1

(𝑖)
)+𝑒(𝑣𝑡ℎ2

(𝑗)
)

2
⌋. 

Case 1. Suppose 𝑒(𝑣𝑡ℎ1

(𝑖)
) + 𝑒(𝑣𝑡ℎ2

(𝑗)
)  is even and 

𝑒(𝑣𝑡ℎ1

(𝑖)
)+𝑒(𝑣𝑡ℎ2

(𝑗)
)

2
= 𝑀 . If 𝑒(𝑣𝑡ℎ1

(𝑖)
) ≠ 𝑒(𝑣𝑡ℎ2

(𝑗)
), 

then 𝑑𝐻(𝑣𝑡ℎ1

(𝑖)
, 𝑣𝑡ℎ2

(𝑗)
) < 𝑀 . So 𝑒(𝑣𝑡ℎ1

(𝑖)
) = 𝑀 = 𝑒(𝑣𝑡ℎ2

(𝑗)
) . Let 𝑃1: 𝑣𝑡ℎ1

(𝑖)
𝑥1𝑥2. . . 𝑥𝑚−1𝑣𝑡ℎ2

(𝑗)
 be a 

shortest path between 𝑣𝑡ℎ1

(𝑖)
 and 𝑣𝑡ℎ2

(𝑗)
 in 𝐻  of length 𝑀 . Since 𝑣𝑡ℎ1

(𝑖)
𝑣𝑡ℎ3

(𝑘)
∈ 𝐸(𝐴𝐸𝐹(𝐻)) for 

1 ≤ ℎ1 ≤ 𝑡𝑖, 1 ≤ ℎ3 ≤ 𝑡𝑘 , 𝑖 ≠ 𝑘  and 1 ≤ 𝑖, 𝑘 ≤ 𝑛 , 𝑣𝑡ℎ3

(𝑘)
≠ 𝑣𝑡ℎ2

(𝑗)
 and 𝑣𝑡ℎ3

(𝑘)
≠ 𝑥1 . So 𝑣𝑡ℎ3

(𝑘)
=

𝑥𝑚−1  and 𝑒(𝑣𝑡ℎ3

(𝑘)
) = 𝑀 − 1 . Since 𝑣𝑡ℎ2

(𝑗)
𝑣𝑡ℎ4

(𝑙)
∈ 𝐸(𝐴𝐸𝐹(𝐻))  for 1 ≤ ℎ2 ≤ 𝑡𝑗 , 1 ≤ ℎ4 ≤ 𝑡𝑙 , 

𝑗 ≠ 𝑙  and 1 ≤ 𝑗, 𝑙 ≤ 𝑛 , 𝑣𝑡ℎ4

(𝑙)
≠ 𝑣𝑡ℎ1

(𝑖)
 and 𝑣𝑡ℎ4

(𝑙)
≠ 𝑥𝑚−1 . So 𝑣𝑡ℎ4

(𝑙)
= 𝑥1 . This implies that 

𝑑𝐻(𝑣𝑡ℎ4

(𝑙)
, 𝑣𝑡ℎ3

(𝑘)
) = 𝑑𝐻(𝑥1, 𝑥𝑚−1) < 𝑀 − 1 and 𝑣𝑡ℎ3

(𝑘)
𝑣𝑡ℎ4

(𝑙)
∈ 𝐸(𝐴𝐸𝐹(𝐻)), a contradiction. 

Case 2. If 𝑒(𝑣𝑡ℎ1

(𝑖)
) + 𝑒(𝑣𝑡ℎ2

(𝑗)
) is odd and ⌊

𝑒(𝑣𝑡ℎ1

(𝑖)
)+𝑒(𝑣𝑡ℎ2

(𝑗)
)

2
⌋ = 𝑀 − 1, then the eccentricity of any 

one of 𝑣𝑡ℎ1

(𝑖)
, 𝑣𝑡ℎ2

(𝑗)
 is 𝑀 − 1 . Let 𝑒(𝑣𝑡ℎ2

(𝑗)
) = 𝑀 − 1 . Then 𝑑𝐻(𝑣𝑡ℎ1

(𝑖)
, 𝑣𝑡ℎ2

(𝑗)
) = 𝑀 − 1  and 

𝑒(𝑣𝑡ℎ1

(𝑖)
) = 𝑀. So 𝑣𝑡ℎ1

(𝑖)
 is adjacent to at least one vertex 𝑣𝑡ℎ5

(𝑠)
 in 𝐴𝐸𝐹(𝐻), for some 𝑠 ≠ 𝑖, 1 ≤

𝑠 ≤ 𝑛 and 1 ≤ ℎ5 ≤ 𝑡𝑠 whose eccentricity is 𝑀. As in Case 1, 𝐴𝐸𝐹(𝐻) is not equal to 𝐺, a 

contradiction. Suppose 𝑒(𝑣𝑡ℎ1

(𝑖)
) = 𝑀 − 1. Then 𝑒(𝑣𝑡ℎ2

(𝑗)
) = 𝑀. So 𝑣𝑡ℎ2

(𝑗)
 is adjacent to at least 

one vertex 𝑣𝑡ℎ6

(𝑔)
 in 𝐴𝐸𝐹(𝐻), for some 𝑔 ≠ 𝑗, 1 ≤ 𝑔 ≤ 𝑛 and 1 ≤ ℎ6 ≤ 𝑡𝑔 whose eccentricity 

is 𝑀. As in Case 1, 𝐴𝐸𝐹(𝐻) is not equal to 𝐺, a contradiction. Thus 𝐺 is not a 𝐹-average 

eccentric graph.         □           

   

Corollary 2.12. Let 𝐺 = 𝑟𝐾1 ∪ 𝐾𝑛 ∪ 𝐺1 ∪ 𝐺2 ∪. . .∪ 𝐺𝑝  be a disconnected graph such that 

𝑛 ≥ 3 and 𝑟 ≥ 1, each 𝐺𝑖 is a square free component and non isomorphic to 𝑃4 for 1 ≤ 𝑖 ≤
𝑝 and |𝑉(𝐺𝑖)| = 𝑟𝑖 for 1 ≤ 𝑖 ≤ 𝑝. Then 𝐺 is not a 𝐹-average eccentric graph. 

Proof. By taking 𝑡1 = 𝑡2 =. . . = 𝑡𝑛 = 1  in Theorem 2.11,  𝐺  is not a 𝐹 -average eccentric 

graph.□           

   

Theorem 2.13. If 𝐺 is a disconnected graph with each component complete having at least 

one isolated vertex, then 𝐺 is not a 𝐹-average eccentric graph. 

Proof. Suppose 𝑟𝐾1 ∪ 𝐾𝑟1
∪ 𝐾𝑟2

∪. . .∪ 𝐾𝑟𝑝
 where 𝑟𝑖 ≥ 3 , 𝑟 ≥ 1  and 1 ≤ 𝑖 ≤ 𝑝 . Assume 

that 𝑟1 + 𝑟2+. . . +𝑟𝑝 = 𝑡 . Let 𝑢1, 𝑢2, . . . , 𝑢𝑟  be the isolated vertices of 𝐺 , 

𝑢𝑟+𝑟𝑖−1+1, 𝑢𝑟+𝑟𝑖−1+2, . . . , 𝑢𝑟+𝑟𝑖
 be the vertices of 𝐾𝑟𝑖

, 1 ≤ 𝑖 ≤ 𝑝 where 𝑟0 = 0. Suppose there 

exists a graph 𝐻  such that 𝐴𝐸𝐹(𝐻) = 𝐺 . If 𝐻  is disconnected, then each component of 

𝐴𝐸𝐹(𝐻) is complete, a contradiction to 𝐺 ∈ 𝐹12. So 𝐻 is connected. By the definition, each 

of 𝑢1, 𝑢2, . . . , 𝑢𝑟 has no 𝐹- average eccentric vertices in 𝐻. If 𝐻 has a full degree vertex, then 
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by Theorem A, 𝐴𝐸𝐹(𝐻) has a full degree vertex, a contradiction. So 𝑟(𝐻) ≥ 2. If 𝑒(𝑢𝑖′) =
𝑑(𝐻) for 1 ≤ 𝑖′ ≤ 𝑟, then 𝑢𝑖′ is not an isolated vertex in 𝐴𝐸𝐹(𝐻), a contradiction. Therefore 

1 < 𝑒(𝑢𝑖′) < 𝑑(𝐻) for 1 ≤ 𝑖′ ≤ 𝑟 and 𝑒(𝑢𝑖) = 𝑑(𝐻) for some 𝑖 = 𝑟 + 1, 𝑟 + 2, . . . , 𝑡. Let 

𝑢𝑟+𝑟𝑖−1+𝑗 be a vertex in 𝑉(𝐾𝑟𝑖
) such that 𝑒(𝑢𝑟+𝑟𝑖−1+𝑗) = 𝑑(𝐻) = 𝑀 and 𝑢𝑟+𝑟𝑖−1

= 𝑢𝑟+𝑟𝑖
 in 

𝑉(𝐾𝑟𝑖
)  for some 𝑗 = 1,2, . . . 𝑟𝑖 − 𝑟𝑖−1 . Since 𝑢𝑟+𝑟𝑖−1+𝑗  is adjacent to 

𝑢𝑟+𝑟𝑖−1+1, 𝑢𝑟+𝑟𝑖−1+2, . . . , 𝑢𝑟+𝑟𝑖−1+𝑗−1, 𝑢𝑟+𝑟𝑖−1+𝑗+1, . . . , 𝑢𝑟+𝑟𝑖
 in 𝐴𝐸𝐹(𝐻) , any one in 

{𝑢𝑟+𝑟𝑖−1+1, 𝑢𝑟+𝑟𝑖−1+2, . . . , 𝑢𝑟+𝑟𝑖−1+𝑗−1, 𝑢𝑟+𝑟𝑖−1+𝑗+1, . . . , 𝑢𝑟+𝑟𝑖
}  is the antipodal vertex of 

𝑢𝑟+𝑟𝑖−1+𝑗  in 𝐻 . Suppose 𝑑𝐻(𝑢𝑟+𝑟𝑖−1+𝑗, 𝑢𝑟+𝑟𝑖−1+𝑗+1) = 𝑀 . Let 

𝑃: 𝑢𝑟+𝑟𝑖−1+𝑗𝑥1𝑥2. . . 𝑥𝑚−1𝑢𝑟+𝑟𝑖−1+𝑗+1  be a diameteral path between 𝑢𝑟+𝑟𝑖−1+𝑗  and 

𝑢𝑟+𝑟𝑖−1+𝑗+1  in 𝐻 . Then 𝑒(𝑢𝑟+𝑟𝑖−1+𝑗+1) = 𝑀 . Since 𝑢𝑟+𝑟𝑖−1+𝑗𝑢𝑘 ∈ 𝐸(𝐴𝐸𝐹(𝐻))  for 𝑟 +

𝑟𝑖−1 + 𝑗 ≠ 𝑘 , 𝑟 + 𝑟𝑖−1 + 1 ≤ 𝑟 + 𝑟𝑖−1 + 𝑗, 𝑘 ≤ 𝑟 + 𝑟𝑖 , 1 ≤ 𝑖 ≤ 𝑝 , 

𝑥ℎ ∈ {𝑢𝑟+𝑟𝑖−1+1, 𝑢𝑟+𝑟𝑖−1+2, . . . , 𝑢𝑟+𝑟𝑖
}  for ℎ = 1,2, . . . , 𝑚 − 1  and 1 ≤ 𝑖 ≤ 𝑝 . Therefore 

𝑥ℎ ∈ {𝑢1, 𝑢2, . . . , 𝑢𝑟}  for ℎ = 1,2, . . . , 𝑚 − 1  and 𝑢𝑟+𝑟𝑖−1+𝑗𝑥𝑚−1, 𝑥1𝑢𝑟+𝑟𝑖−1+𝑗+1 ∈

𝐸(𝐴𝐸𝐹(𝐻)) , a contradiction.Thus 𝐺  is not a 𝐹 -average eccentric graph.                        

□   

 

Theorem 2.14. If 𝐺 is 𝑟𝐾1 ∪ 𝐶𝑟1
∪ 𝐶𝑟2

∪. . .∪ 𝐶𝑟𝑝
, 𝑟𝑖 ≥ 3, 𝑟 ≥ 1 and 1 ≤ 𝑖 ≤ 𝑝, then 𝐺 is 

not a 𝐹-average eccentric graph. 

Proof. Assume that 𝑟1 + 𝑟2+. . . +𝑟𝑝 = 𝑡 . Let 𝑢1, 𝑢2, . . . , 𝑢𝑟  be the isolated vertices of 𝐺 , 

𝑢𝑟+𝑟𝑖−1+1, 𝑢𝑟+𝑟𝑖−1+2, . . . , 𝑢𝑟+𝑟𝑖
 be the vertices on the cycle 𝐶𝑟𝑖

, 1 ≤ 𝑖 ≤ 𝑝 where 𝑟0 = 0. If 𝐺 

has a triangle of length 3, then by Theorem 2.13, 𝐺 is not a 𝐹-average eccentric graph. Let 

𝑡 ≥ 4. Suppose there exists a graph 𝐻 such that 𝐴𝐸𝐹(𝐻) = 𝐺. If 𝐻 is disconnected, then each 

component of 𝐴𝐸𝐹(𝐻) is complete, a contradiction to 𝐺 ∈ 𝐹12. So 𝐻 is connected. By the 

definition, each of 𝑢1, 𝑢2, . . . , 𝑢𝑟 has no 𝐹- average eccentric vertices in 𝐻. If 𝐻 has a full 

degree vertex, then by Theorem A, 𝐴𝐸𝐹(𝐻) has a full degree vertex, a contradiction. So 

𝑟(𝐻) ≥ 2. If 𝑒(𝑢𝑖′) = 𝑑(𝐻) for 1 ≤ 𝑖′ ≤ 𝑟, then 𝑢𝑖′ is not an isolated vertex in 𝐴𝐸𝐹(𝐻), a 

contradiction. Therefore 1 < 𝑒(𝑢𝑖′) < 𝑑(𝐻)  for 1 ≤ 𝑖′ ≤ 𝑟  and 𝑒(𝑢𝑖) = 𝑑(𝐻)  for some 

𝑖 = 𝑟 + 1, 𝑟 + 2, . . . , 𝑡. Let 𝑢𝑟+𝑟𝑖−1+𝑗 be a vertex in 𝑉(𝐶𝑟𝑖
) such that 𝑒(𝑢𝑟+𝑟𝑖−1+𝑗) = 𝑑(𝐻) =

𝑀 and 𝑢𝑟+𝑟𝑖−1
= 𝑢𝑟+𝑟𝑖

 in 𝑉(𝐶𝑟𝑖
) for some 𝑗 = 1,2, . . . 𝑟𝑖 − 𝑟𝑖−1. Since 𝑢𝑟+𝑟𝑖−1+𝑗 is adjacent 

to 𝑢𝑟+𝑟𝑖−1+𝑗−1  and 𝑢𝑟+𝑟𝑖−1+𝑗+1  only in 𝐴𝐸𝐹(𝐻), any one in {𝑢𝑟+𝑟𝑖−1+𝑗−1, 𝑢𝑟+𝑟𝑖−1+𝑗+1} is 

the antipodal vertex of 𝑢𝑟+𝑟𝑖−1+𝑗 in 𝐻.     Suppose 𝑑𝐻(𝑢𝑟+𝑟𝑖−1+𝑗, 𝑢𝑟+𝑟𝑖−1+𝑗+1) = 𝑀.    Let 

𝑃: 𝑢𝑟+𝑟𝑖−1+𝑗𝑥1𝑥2. . . 𝑥𝑚−1 

𝑢𝑟+𝑟𝑖−1+𝑗+1  be a diameteral path between 𝑢𝑟+𝑟𝑖−1+𝑗  and 𝑢𝑟+𝑟𝑖−1+𝑗+1  in 𝐻 . Then 

𝑒(𝑢𝑟+𝑟𝑖−1+𝑗+1) = 𝑀 . Since 𝑢𝑟+𝑟𝑖−1+𝑗−1𝑢𝑟+𝑟𝑖−1+𝑗 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑢𝑟+𝑟𝑖−1+𝑗−1 ≠ 𝑥1  and 

𝑢𝑟+𝑟𝑖−1+𝑗−1 ≠ 𝑢𝑟+𝑟𝑖−1+𝑗+1 . So 𝑢𝑟+𝑟𝑖−1+𝑗−1 = 𝑥𝑚−1  and 𝑒(𝑢𝑟+𝑟𝑖−1+𝑗−1) = 𝑀 − 1 . Since 

𝑢𝑟+𝑟𝑖−1+𝑗+1𝑢𝑟+𝑟𝑖−1+𝑗+2 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑢𝑟+𝑟𝑖−1+𝑗+2 ≠ 𝑥𝑚−1  and 𝑢𝑟+𝑟𝑖−1+𝑗+2  ≠ 𝑢𝑟+𝑟𝑖−1+𝑗 . 

So 𝑢𝑟+𝑟𝑖−1+𝑗+2 = 𝑥1 and 𝑒(𝑢𝑟+𝑟𝑖−1+𝑗+2) = 𝑀 − 1. 

Case 1. Suppose 𝐺  has a cycle 𝐶𝑟𝑖
 of length ≥ 5 . Since 𝑒(𝑢𝑟+𝑟𝑖−1+𝑗+2) = 𝑀 − 1 , 

𝑢𝑟+𝑟𝑖−1+𝑗+3 ∈ 𝑉(𝐻) − {𝑢𝑟+𝑟𝑖−1+𝑗, 𝑥1, 𝑥2, . . . , 𝑥𝑚−1, 𝑢𝑟+𝑟𝑖−1+𝑗+1} .If  𝑢𝑟+𝑟𝑖−1+𝑗+3 ∈

{𝑢1, 𝑢2, . . . , 𝑢𝑟}  , then any one of 𝑢1, 𝑢2, . . . , 𝑢𝑟  is not an isolated vertex in 𝐴𝐸𝐹(𝐻) , a 

contradiction. So 𝑢𝑟+𝑟𝑖−1+𝑗+3 ∈ {𝑢𝑟+1, 𝑢𝑟+2, . . . , 𝑢𝑡} −  {𝑢𝑟+𝑟𝑖−1+𝑗, 

𝑥1, 𝑥2, . . . , 𝑥𝑚−1, 𝑢𝑟+𝑟𝑖−1+𝑗+1 . Then 𝑑𝐻(𝑢𝑟+𝑟𝑖−1+𝑗, 𝑢𝑟+𝑟𝑖−1+𝑗+3) = 𝑀 . Hence 

𝑢𝑟+𝑟𝑖−1+𝑗𝑢𝑟+𝑟𝑖−1+𝑗+3 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), a contradiction. 
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Case 2. Suppose 𝐺  has a cycle 𝐶𝑟𝑖
 of length 4. Then 𝑢𝑟+𝑟𝑖−1+𝑗−1𝑢𝑟+𝑟𝑖−1+𝑗𝑢𝑟+𝑟𝑖−1+𝑗+1  

𝑢𝑟+𝑟𝑖−1+𝑗+2𝑢𝑟+𝑟𝑖−1+𝑗−1  is a cycle 𝐶𝑟𝑖
= 𝐶4  in 𝐴𝐸𝐹(𝐻)  and 𝑢𝑟+𝑟𝑖−1

= 𝑢𝑟+𝑟𝑖
 in 𝑉(𝐶𝑟𝑖

) 

for  𝑗 =  1,2,3,4 . So 𝑑𝐻(𝑢𝑟+𝑟𝑖−1+𝑗+2, 𝑢𝑟+𝑟𝑖−1+𝑗−1) = 𝑑𝐻(𝑥1, 𝑥𝑚−1) < 𝑀 − 1  and 

𝑢𝑟+𝑟𝑖−1+𝑗−1𝑢𝑟+𝑟𝑖−1+𝑗+2   ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , a contradiction.                                                                 

□ 

   

Theorem 2.15. Let 𝐺 = 𝑟𝐾1 ∪ 𝐶𝑡 ∪ 𝐺1 ∪ 𝐺2 ∪. . .∪ 𝐺𝑝 be a disconnected graph such that 𝑟 ≥

1, 𝑡 ≥ 3 and each 𝐺𝑖 is a square free component and non isomorphic to 𝑃4 for 1 ≤ 𝑖 ≤ 𝑝. 

Then 𝐺 is not a 𝐹-average eccentric graph. 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑟 be the isolated vertices, 𝑣𝑟+1, 𝑣𝑟+2, . . . , 𝑣𝑟+𝑡 be the vertices on the 

cycle 𝐶𝑡 and 𝑣𝑟+𝑡+𝑟𝑖−1+1, 𝑣𝑟+𝑡+𝑟𝑖−1+2, . . . , 𝑣𝑟+𝑡+𝑟𝑖
 be the vertices of the component 𝐺𝑖, 1 ≤

𝑖 ≤ 𝑝  where 𝑟0 = 0 . Suppose there exists a graph 𝐻  such that 𝐴𝐸𝐹(𝐻) = 𝐺 . If 𝐻  is 

disconnected, then each component of 𝐴𝐸𝐹(𝐻) is complete, a contradiction to 𝐺 ∈ 𝐹12. So 𝐻 

is connected. By the definition, each of 𝑣1, 𝑣2, . . . , 𝑣𝑟 has no 𝐹- average eccentric vertices in 

𝐻. If 𝐻 has a full degree vertex, then by Theorem A, 𝐴𝐸𝐹(𝐻) has a full degree vertex, a 

contradiction. So 𝑟(𝐻) ≥ 2. 

Case 1. 𝑡 = 3 or 𝑡 ≥ 5. Then by Theorem 2.10, 𝐺 is not a 𝐹-average eccentric graph. 

Case 2. 𝑡 = 4. In this case, 𝑣𝑟+𝑖𝑣𝑟+𝑖+1𝑣𝑟+𝑖+2𝑣𝑟+𝑖+3𝑣𝑟+𝑖  is a cycle 𝐶4  in 𝐴𝐸𝐹(𝐻) where 

𝑣𝑟+𝑖+4 = 𝑣𝑟+𝑖  for 1 ≤ 𝑖 ≤ 4 . Since 𝑣𝑟+𝑖𝑣𝑟+𝑖+1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , there is a shortest path 

between 𝑣𝑟+𝑖 and 𝑣𝑟+𝑖+1 in 𝐻 of length ⌊
𝑒(𝑣𝑟+𝑖)+𝑒(𝑣𝑟+𝑖+1)

2
⌋. 

Case 2.1. Suppose 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑣𝑟+𝑖+1) is even and ⌊
𝑒(𝑣𝑟+𝑖)+𝑒(𝑣𝑟+𝑖+1)

2
⌋ = 𝑀.  

If 𝑒(𝑣𝑟+𝑖) ≠ 𝑒(𝑣𝑟+𝑖+1) , then 𝑑𝐻(𝑣𝑟+𝑖, 𝑣𝑟+𝑖+1) < 𝑀 . So 𝑒(𝑣𝑟+𝑖) = 𝑀 = 𝑒(𝑣𝑟+𝑖+1) . Let 

𝑃1: 𝑣𝑟+𝑖𝑤1𝑤2. . . 𝑤𝑚−1𝑣𝑟+𝑖+1 be a shortest path between 𝑣𝑟+𝑖 and 𝑣𝑟+𝑖+1 in 𝐻 of length 𝑀. 

Since 𝑣𝑟+𝑖+1𝑣𝑟+𝑖+2 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑖+2 ≠ 𝑣𝑟+𝑖  and 𝑣𝑟+𝑖+2 ≠ 𝑤𝑚−1 . So 𝑣𝑟+𝑖+2 = 𝑤1 

and 𝑒(𝑣𝑟+𝑖+2) = 𝑀 − 1 . Since 𝑣𝑟+𝑖𝑣𝑟+𝑖+3 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑖+3 ≠ 𝑣𝑟+𝑖+1  and 𝑣𝑟+𝑖+3 ≠
𝑤1 . So 𝑣𝑟+𝑖+3 = 𝑤𝑚−1  and 𝑒(𝑣𝑟+𝑖+3) = 𝑀 − 1 . This implies that 𝑑𝐻(𝑣𝑟+𝑖+2, 𝑣𝑟+𝑖+3) = 

𝑑𝐻(𝑤1, 𝑤𝑚−1) < 𝑀 − 1 and 𝑣𝑟+𝑖+2𝑣𝑟+𝑖+3 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), a contradiction. 

Case 2.2. Suppose 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑣𝑟+𝑖+1) is odd and ⌊
𝑒(𝑣𝑟+𝑖)+𝑒(𝑣𝑟+𝑖+1)

2
⌋ = 𝑀 − 1. In this case, 

the eccentricity of any one of 𝑣𝑟+𝑖, 𝑣𝑟+𝑖+1  is 𝑀 − 1 . Let 𝑒(𝑣𝑟+𝑖) = 𝑀 − 1 . Then 

𝑒(𝑣𝑟+𝑖+1) = 𝑀 . Since 𝑣𝑟+𝑖+1  is adjacent to 𝑣𝑟+𝑖  and 𝑣𝑟+𝑖+2  only, 𝑒(𝑣𝑟+𝑖+2) = 𝑀 . Let 

𝑃2: 𝑣𝑟+𝑖+2𝑤′1𝑤′2. . . 𝑤′𝑖𝑤𝑖+1. . . 𝑤𝑚−1𝑣𝑟+𝑖+1 be a shortest path between 𝑣𝑟+𝑖+2 and 𝑣𝑟+𝑖+1 in 

𝐻  of length 𝑀 . Since 𝑣𝑟+𝑖𝑣𝑟+𝑖+1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑖 ≠ 𝑣𝑟+𝑖+2  and 𝑣𝑟+𝑖 ≠ 𝑤𝑚−1 . So 

𝑣𝑟+𝑖 = 𝑤′1 and 𝑒(𝑣𝑟+𝑖) = 𝑀 − 1. Since 𝑣𝑟+𝑖+2𝑣𝑟+𝑖+3 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), 𝑣𝑟+𝑖+3 ≠ 𝑣𝑟+𝑖+1 and 

𝑣𝑟+𝑖+3 ≠ 𝑤′1 . So 𝑣𝑟+𝑖+3 = 𝑤𝑚−1  and 𝑒(𝑣𝑟+𝑖+3) = 𝑀 − 1 . This implies that 

𝑑𝐻(𝑣𝑟+𝑖, 𝑣𝑟+𝑖+3) = 𝑑𝐻(𝑤′1, 𝑤𝑚−1) < 𝑀 − 1 and 𝑣𝑟+𝑖𝑣𝑟+𝑖+3 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), a contradiction. 

Suppose 𝑒(𝑣𝑟+𝑖+1) = 𝑀 − 1. Then 𝑒(𝑣𝑟+𝑖) = 𝑀 and hence 𝑒(𝑣𝑟+𝑖+3) = 𝑀. As in Case 2.1, 

𝐴𝐸𝐹(𝐻)  is not equal to 𝐺 , a contradiction.                                                                             

□ 

   

Theorem 2.16. Let 𝐺 = 𝑟𝐾1 ∪ 𝑇𝑡 ∪ 𝐺1 ∪ 𝐺2 ∪. . .∪ 𝐺𝑝 be a disconnected such that 𝑟 ≥ 1, a 

tree 𝑇𝑡 on 𝑡 ≥ 5 vertices as a component having a path on length 4 and each 𝐺𝑖 is a square 

free component and non isomorphic to 𝑃4 for 1 ≤ 𝑖 ≤ 𝑝. Then 𝐺 is not a 𝐹-average eccentric 

graph. 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑟 be the isolated vertices, 𝑣𝑟+1, 𝑣𝑟+2, . . . , 𝑣𝑟+𝑡 be the vertices on the 
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cycle 𝑇𝑡 and 𝑣𝑟+𝑡+𝑟𝑖−1+1, 𝑣𝑟+𝑡+𝑟𝑖−1+2, . . . , 𝑣𝑟+𝑡+𝑟𝑖
 be the vertices of the component 𝐺𝑖, 1 ≤

𝑖 ≤ 𝑝  where 𝑟0 = 0 . Suppose there exists a graph 𝐻  such that 𝐴𝐸𝐹(𝐻) = 𝐺 . If 𝐻  is 

disconnected, then each component of 𝐴𝐸𝐹(𝐻) is complete, a contradiction to 𝐺 ∈ 𝐹12. So 𝐻 

is connected. By the definition, each of 𝑣1, 𝑣2, . . . , 𝑣𝑟 has no 𝐹- average eccentric vertices in 

𝐻. If 𝐻 has a full degree vertex, then by Theorem A, 𝐴𝐸𝐹(𝐻) has a full degree vertex, a 

contradiction. So 𝑟(𝐻) ≥ 2 . Let 𝑣𝑟+𝑖, 𝑣𝑟+𝑗 , 𝑣𝑟+𝑘, 𝑣𝑟+𝑙, 𝑣𝑟+𝑚  be the consecutive adjacent 

vertices of 𝑇𝑡. Since 𝑣𝑟+𝑗 and 𝑣𝑟+𝑘 are adjacent in 𝐴𝐸𝐹(𝐻), there is a shortest path between 

𝑣𝑟+𝑗 and 𝑣𝑟+𝑘 in 𝐻 of length ⌊
𝑒(𝑣𝑟+𝑗)+𝑒(𝑣𝑟+𝑘)

2
⌋. 

Case 1. Suppose 𝑒(𝑣𝑟+𝑗) + 𝑒(𝑣𝑟+𝑘) is even or odd. 

Case 1.1. Suppose 𝑒(𝑣𝑟+𝑗) + 𝑒(𝑣𝑟+𝑘)  is even and 
𝑒(𝑣𝑟+𝑗)+𝑒(𝑣𝑟+𝑘)

2
= 𝑀 . If 𝑒(𝑣𝑟+𝑗) ≠

𝑒(𝑣𝑟+𝑘) , then 𝑑𝐻(𝑣𝑟+𝑗, 𝑣𝑟+𝑘) < 𝑀 . So 𝑒(𝑣𝑟+𝑗) = 𝑀 = 𝑒(𝑣𝑟+𝑘) . Let 

𝑃1: 𝑣𝑟+𝑗𝑥1𝑥2. . . 𝑥𝑚−1𝑣𝑟+𝑘  be a shortest path between 𝑣𝑟+𝑗  and 𝑣𝑟+𝑘  in 𝐻  of length 𝑀 . 

Since 𝑣𝑟+𝑘𝑣𝑟+𝑙 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑙 ≠ 𝑣𝑟+𝑗  and 𝑣𝑟+𝑙 ≠ 𝑥𝑚−1 . So 𝑣𝑟+𝑙 = 𝑥1  and 

𝑒(𝑣𝑟+𝑙) = 𝑀 − 1. Suppose 𝑒(𝑣𝑟+𝑚) = 𝑀 − 1. Let 𝑃2: 𝑣𝑟+𝑙𝑥2𝑥3. . . 𝑥𝑖𝑥′𝑖+1. . . 𝑥′𝑚−1𝑣𝑟+𝑚  be 

a shortest path between 𝑣𝑟+𝑙  and 𝑣𝑟+𝑚  in 𝐻  of length 𝑀 − 1 . This implies that 

𝑑𝐻(𝑣𝑟+𝑗, 𝑣𝑟+𝑚) = 𝑑𝐻(𝑣𝑟+𝑗 , 𝑣𝑟+𝑙) + 𝑑𝐻(𝑣𝑟+𝑙, 𝑣𝑟+𝑚) = 𝑀  and 𝑣𝑟+𝑗𝑣𝑟+𝑚 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , a 

contradiction. If 𝑒(𝑣𝑟+𝑚) = 𝑀 , then 𝑑𝐻(𝑣𝑟+𝑗 , 𝑣𝑟+𝑚) > 𝑀  which is impossible since 

𝑒(𝑣𝑟+𝑗) = 𝑀. 

Case 1.2. If 𝑒(𝑣𝑟+𝑗) + 𝑒(𝑣𝑟+𝑘) is odd and ⌊
𝑒(𝑣𝑟+𝑗)+𝑒(𝑣𝑟+𝑘)

2
⌋ = 𝑀 − 1, then the eccentricity of 

any one of 𝑣𝑟+𝑗 , 𝑣𝑟+𝑘 is 𝑀 − 1. Let 𝑒(𝑣𝑟+𝑘) = 𝑀 − 1. Then 𝑑𝐻(𝑣𝑟+𝑗 , 𝑣𝑟+𝑘) = 𝑀 − 1 and 

𝑒(𝑣𝑟+𝑗) = 𝑀. So 𝑣𝑟+𝑗 is adjacent to at least one vertex 𝑣𝑟+𝑗∗ ∈ 𝑇𝑡 whose eccentricity is 𝑀. 

Let 𝑃2: 𝑣𝑟+𝑗𝑦1𝑦2. . . 𝑦𝑚−1𝑣𝑟+𝑗∗ be a shortest path between 𝑣𝑟+𝑗 and 𝑣𝑟+𝑗∗ in 𝐻 of length 𝑀. 

Since 𝑣𝑟+𝑗𝑣𝑟+𝑘 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑘 ≠ 𝑣𝑟+𝑗∗  and 𝑣𝑟+𝑘 ≠ 𝑦1 . So 𝑣𝑟+𝑘 = 𝑦𝑚−1 . Since 

𝑣𝑟+𝑘𝑣𝑟+𝑙 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑙 ≠ 𝑣𝑟+𝑗∗  and 𝑣𝑟+𝑙 ≠ 𝑣𝑟+𝑗 . Since 𝑒(𝑣𝑟+𝑘) = 𝑀 − 1 , 

𝑑𝐻(𝑣𝑟+𝑘, 𝑣𝑟+𝑙) = 𝑀 − 1  and 𝑒(𝑣𝑟+𝑙) = 𝑀 . This implies that 𝑑𝐻(𝑣𝑟+𝑙, 𝑣𝑟+𝑗∗) =

𝑑𝐻(𝑣𝑟+𝑙, 𝑣𝑟+𝑘) + 𝑑𝐻(𝑣𝑟+𝑘 , 𝑣𝑟+𝑗∗) = 𝑀  and 𝑣𝑟+𝑙𝑣𝑟+𝑗∗ ∈ 𝐸(𝐴𝐸𝐹(𝐻)) . Hence 

𝑣𝑟+𝑗𝑣𝑟+𝑘𝑣𝑟+𝑙𝑣𝑟+𝑗∗𝑣𝑟+𝑗 is a cycle 𝐶4 in 𝐴𝐸𝐹(𝐻), a contradiction. Suppose 𝑒(𝑣𝑟+𝑗) = 𝑀 −

1 . Then 𝑒(𝑣𝑟+𝑘) = 𝑀 . So 𝑣𝑟+𝑘  is adjacent to at least one vertex 𝑣𝑟+𝑘∗ ∈ 𝑇𝑡  whose 

eccentricity is 𝑀 . Let 𝑃3: 𝑣𝑟+𝑘𝑦′1𝑦′2. . . 𝑦′𝑚−1𝑣𝑟+𝑘∗  be a shortest path between 𝑣𝑟+𝑘  and 

𝑣𝑟+𝑘∗  in 𝐻 of length 𝑀. Since 𝑣𝑟+𝑘𝑣𝑟+𝑗 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), 𝑣𝑟+𝑗 ≠ 𝑣𝑟+𝑘∗  and 𝑣𝑟+𝑗 ≠ 𝑦′1. So 

𝑣𝑟+𝑗 = 𝑦′𝑚−1 . Since 𝑒(𝑣𝑟+𝑗) = 𝑀 − 1 , 𝑑𝐻(𝑣𝑟+𝑗, 𝑣𝑟+𝑖) = 𝑀 − 1  and 𝑒(𝑣𝑟+𝑖) = 𝑀 . This 

implies that 𝑑𝐻(𝑣𝑟+𝑖, 𝑣𝑟+𝑘∗) = 𝑑𝐻(𝑣𝑟+𝑖, 𝑣𝑟+𝑗) + 𝑑𝐻(𝑣𝑟+𝑗, 𝑣𝑟+𝑘∗) = 𝑀  and 𝑣𝑟+𝑖𝑣𝑟+𝑘∗ ∈

𝐸(𝐴𝐸𝐹(𝐻)). Hence 𝑣𝑟+𝑘𝑣𝑟+𝑘∗𝑣𝑟+𝑖𝑣𝑟+𝑗𝑣𝑟+𝑘 is a cycle 𝐶4 in 𝐴𝐸𝐹(𝐻), a contradiction. 

Case 2. If either 𝑒(𝑣𝑟+𝑘) + 𝑒(𝑣𝑟+𝑙) is even or odd, then as in Case 1, 𝐴𝐸𝐹(𝐻) is not equal to 

𝐺. 

Case 3. Suppose 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑣𝑟+𝑗) is even or odd. If 𝑣𝑟+𝑖 is not a pendant vertex, then as in 

Case 1, 𝐴𝐸𝐹(𝐻) is not equal to 𝐺. Suppose 𝑣𝑟+𝑖 is a pendant vertex. 

Case 3.1. If 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑣𝑟+𝑗) is even and ⌊
𝑒(𝑣𝑟+𝑖)+𝑒(𝑣𝑟+𝑗)

2
⌋ = 𝑀. If 𝑒(𝑣𝑟+𝑖) ≠ 𝑒(𝑣𝑟+𝑗), then 

𝑑𝐻(𝑣𝑟+𝑖, 𝑣𝑟+𝑗) < 𝑀. So 𝑒(𝑣𝑟+𝑖) = 𝑀 = 𝑒(𝑣𝑟+𝑗). Let 𝑃4: 𝑣𝑟+𝑖𝑧1𝑧2. . . 𝑧𝑚−1𝑣𝑟+𝑗 be a shortest 

path between 𝑣𝑟+𝑖  and 𝑣𝑟+𝑗  in 𝐻  of length 𝑀 . Then 𝑑𝐻(𝑣𝑟+𝑖, 𝑧𝑚−1) = 𝑀 − 1  and 

𝑒(𝑧𝑚−1) = 𝑀 − 1 . Hence 𝑣𝑟+𝑖𝑧𝑚−1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , a contradiction to the fact 𝑣𝑟+𝑖  is a 

pendant vertex. 
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Case 3.2. If 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑣𝑟+𝑗) is odd and ⌊
𝑒(𝑣𝑟+𝑖)+𝑒(𝑣𝑟+𝑗)

2
⌋ = 𝑀 − 1, then the eccentricity of 

any one of 𝑣𝑟+𝑖, 𝑣𝑟+𝑗  is 𝑀 − 1. Let 𝑒(𝑣𝑟+𝑖) = 𝑀 − 1. Then 𝑑𝐻(𝑣𝑟+𝑖, 𝑣𝑟+𝑗) = 𝑀 − 1 and 

𝑒(𝑣𝑟+𝑗) = 𝑀. So 𝑣𝑟+𝑗 is adjacent to at least one vertex 𝑣𝑟+𝑗∗ ∈ 𝑇𝑡 whose eccentricity is 𝑀. 

Since 𝑃2: 𝑣𝑟+𝑗𝑦1𝑦2. . . 𝑦𝑚−1𝑣𝑟+𝑗∗  is a shortest path between 𝑣𝑟+𝑗  and 𝑣𝑟+𝑗∗  in 𝐻 of length 

𝑀  and 𝑣𝑟+𝑗𝑣𝑟+𝑘 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑘 ≠ 𝑣𝑟+𝑗∗  and 𝑣𝑟+𝑘 ≠ 𝑦1 . So 𝑣𝑟+𝑘 = 𝑦𝑚−1 . Since 

𝑣𝑟+𝑘𝑣𝑟+𝑙 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑙 ≠ 𝑣𝑟+𝑗∗  and 𝑣𝑟+𝑙 ≠ 𝑣𝑟+𝑗 . Since 𝑒(𝑣𝑟+𝑘) = 𝑀 − 1 , 

𝑑𝐻(𝑣𝑟+𝑘, 𝑣𝑟+𝑙) = 𝑀 − 1  and 𝑒(𝑣𝑟+𝑙) = 𝑀 . This implies that 𝑑𝐻(𝑣𝑟+𝑙, 𝑣𝑟+𝑗∗) =                   

𝑑𝐻(𝑣𝑟+𝑙, 𝑣𝑟+𝑘) + 𝑑𝐻(𝑣𝑟+𝑘 , 𝑣𝑟+𝑗∗) = 𝑀  and 𝑣𝑟+𝑙𝑣𝑟+𝑗∗ ∈ 𝐸(𝐴𝐸𝐹(𝐻)) . Hence 𝑣𝑟+𝑗𝑣𝑟+𝑘𝑣𝑟+𝑙 

𝑣𝑟+𝑗∗𝑣𝑟+𝑗 is a cycle 𝐶4 in 𝐴𝐸𝐹(𝐻), a contradiction. Suppose 𝑒(𝑣𝑟+𝑖) = 𝑀. Since 𝑣𝑟+𝑖 is a 

pendant vertex, 𝑒(𝑣𝑟+𝑗) = 𝑀, a contradiction to 𝑒(𝑣𝑟+𝑗) = 𝑀 − 1. 

Case 4. Suppose 𝑒(𝑣𝑟+𝑙) + 𝑒(𝑣𝑟+𝑚) is even or odd. If 𝑣𝑟+𝑚 is not a pendant vertex, then as 

in Case 1, 𝐴𝐸𝐹(𝐻), is not equal to 𝐺. Suppose 𝑣𝑟+𝑚 is a pendant vertex. Then as in Case 3.1 

and 3.2, 𝐴𝐸𝐹(𝐻)  is not equal to 𝐺 . Thus 𝐺  is not a 𝐹 -average eccentric graph.                    

□  

 

Proposition 2.17. Let 𝐺 = 𝑟𝐾1 ∪ 𝐿𝑡 ∪ 𝐺1 ∪ 𝐺2 ∪. . .∪ 𝐺𝑝 be a disconnected such that 𝑟 ≥ 1, 

a ladder 𝐿𝑡 as a component with 𝑡 ≥ 2 steps, each 𝐺𝑖 is a square free component and non 

isomorphic to 𝑃4  for 1 ≤ 𝑖 ≤ 𝑝  and |𝑉(𝐺𝑖)| = 𝑟𝑖  for 𝑖 = 1,2, . . . , 𝑝 . Then 𝐺  is not a 𝐹 -

average eccentric graph. 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑟 be the isolated vertices of 𝐺, 𝑣𝑟+1, 𝑣𝑟+2, . . . , 𝑣𝑟+𝑡, 𝑤𝑟+1, . . . , 𝑤𝑟+𝑡 be 

the vertices of the ladder 𝐿𝑡 and 𝑣𝑟+𝑡+𝑟𝑖−1+1, 𝑣𝑟+𝑡+𝑟𝑖−1+2, . . ., 𝑣𝑟+𝑡+𝑟𝑖
 be the vertices of the 

component 𝐺𝑖 , 1 ≤ 𝑖 ≤ 𝑝  where 𝑟0 = 0 . Suppose there exists a graph 𝐻  such that 

𝐴𝐸𝐹(𝐻) = 𝐺 . If 𝐻  is disconnected, then each component of 𝐴𝐸𝐹(𝐻)  is complete, a 

contradiction to 𝐺 ∈ 𝐹12. So 𝐻 is connected. By the definition, each of 𝑣1, 𝑣2, . . . , 𝑣𝑟 has no 

𝐹- average eccentric vertices in 𝐻. If 𝐻 has a full degree vertex, then by Theorem A, 𝐴𝐸𝐹(𝐻) 

has a full degree vertex, a contradiction. So 𝑟(𝐻) ≥ 2. Since 𝑣𝑟+𝑖 and 𝑣𝑟+𝑖+1 are adjacent in 

𝐴𝐸𝐹(𝐻), there is a shortest path between 𝑣𝑟+𝑖 and 𝑣𝑟+𝑖+1 in 𝐻 of length ⌊
𝑒(𝑣𝑟+𝑖)+𝑒(𝑣𝑟+𝑖+1)

2
⌋. 

If 𝑡 = 2, then 𝐿𝑡 = 𝐶4 and by Theorem A, the result follows. So 𝑡 ≥ 3. 

Case 1. 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑣𝑟+𝑖+1) is even or odd. 

Case 1.1. 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑣𝑟+𝑖+1)  is even and 
𝑒(𝑣𝑟+𝑖)+𝑒(𝑣𝑟+𝑖+1)

2
= 𝑀 . If 𝑒(𝑣𝑟+𝑖) ≠ 𝑒(𝑣𝑟+𝑖+1), 

then 𝑑𝐻(𝑣𝑟+𝑖, 𝑣𝑟+𝑖+1) < 𝑀 . So 𝑒(𝑣𝑟+𝑖) = 𝑀 = 𝑒(𝑣𝑟+𝑖+1). Let 𝑃1: 𝑣𝑟+𝑖𝑥1𝑥2. . . 𝑥𝑚−1𝑣𝑟+𝑖+1 

be a shortest path between 𝑣𝑟+𝑖  and 𝑣𝑟+𝑖+1  in 𝐻  of length 𝑀 . Since 𝑣𝑟+𝑖+1𝑤𝑟+𝑖+1 ∈
𝐸(𝐴𝐸𝐹(𝐻)), 𝑤𝑟+𝑖+1 ≠ 𝑣𝑟+𝑖 and 𝑤𝑟+𝑖+1 ≠ 𝑥𝑚−1. So 𝑤𝑟+𝑖+1 = 𝑥1 and 𝑒(𝑤𝑟+𝑖+1) = 𝑀 − 1. 

Since 𝑣𝑟+𝑖𝑤𝑟+𝑖 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑤𝑟+𝑖 ≠ 𝑣𝑟+𝑖+1  and 𝑤𝑟+𝑖 ≠ 𝑥1 . So 𝑤𝑟+𝑖 = 𝑥𝑚−1  and 

𝑒(𝑤𝑟+𝑖) = 𝑀 − 1 . This implies that 𝑑𝐻(𝑤𝑟+𝑖, 𝑤𝑟+𝑖+1) = 𝑑𝐻(𝑥𝑚−1, 𝑥1) < 𝑀 − 1  and 

𝑤𝑟+𝑖𝑤𝑟+𝑖+1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), a contradiction. 

Case 1.2. If 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑣𝑟+𝑖+1) is odd and ⌊
𝑒(𝑣𝑟+𝑖)+𝑒(𝑣𝑟+𝑖+1)

2
⌋ = 𝑀 − 1, then the eccentricity 

of any one of 𝑣𝑟+𝑖, 𝑣𝑟+𝑖+1 is 𝑀 − 1. Let 𝑒(𝑣𝑟+𝑖+1) = 𝑀 − 1. Then 𝑑𝐻(𝑣𝑟+𝑖, 𝑣𝑟+𝑖+1) = 𝑀 −
1 and 𝑒(𝑣𝑟+𝑖) = 𝑀. Since 𝑣𝑟+𝑖 is adjacent to 𝑣𝑟+𝑖−1, 𝑤𝑟+𝑖 and 𝑣𝑟+𝑖+1 only, the eccentricity 

of any one of 𝑣𝑟+𝑖−1, 𝑤𝑟+𝑖  is 𝑀 . Suppose 𝑒(𝑣𝑟+𝑖−1) = 𝑀 . Let 

𝑃2: 𝑣𝑟+𝑖𝑥1𝑥2. . . 𝑥𝑖𝑥′𝑖+1. . . 𝑥′𝑚−1𝑣𝑟+𝑖−1 be a shortest path between 𝑣𝑟+𝑖  and 𝑣𝑟+𝑖−1 in 𝐻 of 

length 𝑀. Since 𝑣𝑟+𝑖𝑤𝑟+𝑖 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), 𝑤𝑟+𝑖 ≠ 𝑣𝑟+𝑖−1 and 𝑤𝑟+𝑖 ≠ 𝑥1. So 𝑤𝑟+𝑖 = 𝑥′𝑚−1 

and 𝑒(𝑤𝑟+𝑖) = 𝑀 − 1 . Since 𝑣𝑟+𝑖−1𝑤𝑟+𝑖−1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑤𝑟+𝑖−1 ≠ 𝑣𝑟+𝑖  and 𝑤𝑟+𝑖−1 ≠
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𝑥′𝑚−1 . So 𝑤𝑟+𝑖−1 = 𝑥1  and 𝑒(𝑤𝑟+𝑖−1) = 𝑀 − 1 . This implies that 𝑑𝐻(𝑤𝑟+𝑖−1, 𝑤𝑟+𝑖) =
𝑑𝐻(𝑥1, 𝑥′𝑚−1) < 𝑀 − 1 and 𝑤𝑟+𝑖−1𝑤𝑟+𝑖 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), a contradiction. Suppose 𝑒(𝑤𝑟+𝑖) =
𝑀. Let 𝑃3: 𝑣𝑟+𝑖𝑥1𝑥2. . . 𝑥𝑗𝑥′′𝑗+1. . . 𝑥′′𝑚−1 𝑤𝑟+𝑖 be a shortest path between 𝑣𝑟+𝑖 and 𝑤𝑟+𝑖 in 

𝐻  of length 𝑀 . Since 𝑣𝑟+𝑖𝑣𝑟+𝑖+1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑖+1 ≠ 𝑤𝑟+𝑖  and 𝑣𝑟+𝑖+1 ≠ 𝑥1 . So 

𝑣𝑟+𝑖+1 = 𝑥′′𝑚−1 and 𝑒(𝑣𝑟+𝑖+1) = 𝑀 − 1. Since 𝑤𝑟+𝑖𝑤𝑟+𝑖+1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), 𝑤𝑟+𝑖+1 ≠ 𝑣𝑟+𝑖 

and 𝑤𝑟+𝑖+1 ≠ 𝑥′′𝑚−1 . So 𝑤𝑟+𝑖+1 = 𝑥1  and 𝑒(𝑤𝑟+𝑖+1) = 𝑀 − 1 . This implies that 

𝑑𝐻(𝑤𝑟+𝑖+1, 𝑣𝑟+𝑖+1) = 𝑑𝐻(𝑥1, 𝑥′′𝑚−1)  < 𝑀 − 1  and 𝑤𝑟+𝑖+1𝑣𝑟+𝑖+1 ∈ 𝐸(𝐴𝐸𝐹(𝐻))  a 

contradiction. If 𝑖 = 1, then 𝑣𝑟+1  is adjacent to 𝑤𝑟+1  and 𝑣𝑟+2  only and 𝑒(𝑤𝑟+1) = 𝑀 . 

Since 𝑣𝑟+1𝑣𝑟+2 ∈ 𝐸(𝐴𝐸𝐹(𝐻)),  by the path 𝑃3 , 𝑣𝑟+2 ≠ 𝑤𝑟+1  and 𝑣𝑟+2 ≠ 𝑥1 . So 𝑣𝑟+2 =
𝑥′′𝑚−1  and 𝑒(𝑣𝑟+2) = 𝑀 − 1 . Since 𝑤𝑟+1𝑤𝑟+2 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑤𝑟+2 ≠ 𝑣𝑟+1  and 𝑤𝑟+2 ≠
𝑥′′𝑚−1 . So 𝑤𝑟+2 = 𝑥1  and 𝑒(𝑤𝑟+2) = 𝑀 − 1 . This implies that 𝑑𝐻(𝑤𝑟+2, 𝑣𝑟+2) =
𝑑𝐻(𝑥1, 𝑥′′𝑚−1) < 𝑀 − 1 and 𝑤𝑟+2𝑣𝑟+2 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), a contradiction. 

Case 2. If either 𝑒(𝑤𝑟+𝑖) + 𝑒(𝑤𝑟+𝑖+1) is even or odd, then as in Case 1, 𝐴𝐸𝐹(𝐻) ≠ 𝐺. 

Case 3. Suppose 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑤𝑟+𝑖) is even or odd. 

Case 3.1. If 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑤𝑟+𝑖) is even and 
𝑒(𝑣𝑟+𝑖)+𝑒(𝑤𝑟+𝑖)

2
= 𝑀. If 𝑒(𝑣𝑟+𝑖) ≠ 𝑒(𝑤𝑟+𝑖), then 

𝑑𝐻(𝑣𝑟+𝑖, 𝑤𝑟+𝑖) < 𝑀 . So 𝑒(𝑣𝑟+𝑖) = 𝑀 = 𝑒(𝑤𝑟+𝑖) . Let 𝑃4: 𝑣𝑟+𝑖𝑦1𝑦2. . . 𝑦𝑚−1𝑤𝑟+𝑖  be a 

shortest path between 𝑣𝑟+𝑖  and 𝑤𝑟+𝑖  in 𝐻  of length 𝑀 . Since 𝑣𝑟+𝑖𝑣𝑟+𝑖+1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), 

𝑣𝑟+𝑖+1 ≠ 𝑤𝑟+𝑖  and 𝑣𝑟+𝑖+1 ≠ 𝑦1 . So 𝑣𝑟+𝑖+1 = 𝑦𝑚−1  and 𝑒(𝑣𝑟+𝑖+1) = 𝑀 − 1 . Since 

𝑤𝑟+𝑖𝑤𝑟+𝑖+1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑤𝑟+𝑖+1 ≠ 𝑣𝑟+𝑖  and 𝑤𝑟+𝑖+1 ≠ 𝑦𝑚−1 . So 𝑤𝑟+𝑖+1 = 𝑦1  and 

𝑒(𝑤𝑟+𝑖+1) = 𝑀 − 1 . This implies that 𝑑𝐻(𝑣𝑟+𝑖+1, 𝑤𝑟+𝑖+1) = 𝑑𝐻(𝑦1, 𝑦𝑚−1) < 𝑀 − 1  and 

𝑣𝑟+𝑖+1𝑤𝑟+𝑖+1 ∈  𝐸(𝐴𝐸𝐹(𝐻)), a contradiction. If 𝑖 = 𝑡, then 𝑣𝑟+𝑡 is adjacent to 𝑣𝑟+𝑡−1 and 

𝑤𝑟+𝑡 only and 𝑒(𝑤𝑟+𝑡) = 𝑀. Since 𝑣𝑟+𝑡−1𝑣𝑟+𝑡 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), by the path 𝑃4, 𝑣𝑟+𝑡−1 ≠ 𝑦1 

and 𝑣𝑟+𝑡−1 ≠ 𝑤𝑟+𝑖 . So 𝑣𝑟+𝑡−1 = 𝑦𝑚−1  and 𝑒(𝑣𝑟+𝑡−1) = 𝑀 − 1 . Since 𝑤𝑟+𝑡−1𝑤𝑟+𝑡 ∈
𝐸(𝐴𝐸𝐹(𝐻)), 𝑤𝑟+𝑡−1 ≠ 𝑦𝑚−1  and 𝑤𝑟+𝑡−1 ≠ 𝑣𝑟+𝑡 . So 𝑤𝑟+𝑡−1 = 𝑦1  and 𝑒(𝑤𝑟+𝑡−1) = 𝑀 −
1 . This implies that 𝑑𝐻(𝑤𝑟+𝑡−1, 𝑣𝑟+𝑡−1) = 𝑑𝐻(𝑦1, 𝑦𝑚−1) < 𝑀 − 1  and 

𝑣𝑟+𝑡−1𝑤𝑟+𝑡−1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)),a contradiction 

Case 3.2. If 𝑒(𝑣𝑟+𝑖) + 𝑒(𝑤𝑟+𝑖) is odd and ⌊
𝑒(𝑣𝑟+𝑖)+𝑒(𝑤𝑟+𝑖)

2
⌋ = 𝑀 − 1, then the eccentricity of 

any one of 𝑣𝑟+𝑖, 𝑤𝑟+𝑖 is 𝑀 − 1. Let 𝑒(𝑤𝑟+𝑖) = 𝑀 − 1. Then 𝑑𝐻(𝑣𝑟+𝑖, 𝑤𝑟+𝑖) = 𝑀 − 1 and 

𝑒(𝑣𝑟+𝑖) = 𝑀. Since 𝑣𝑟+𝑖 is adjacent to 𝑣𝑟+𝑖−1, 𝑤𝑟+𝑖 and 𝑣𝑟+𝑖+1 only, the eccentricity of any 

one of 𝑣𝑟+𝑖−1, 𝑣𝑟+𝑖+1  is 𝑀 .Suppose 𝑒(𝑣𝑟+𝑖−1) = 𝑀 . Let 

𝑃5: 𝑣𝑟+𝑖𝑦1𝑦2. . . 𝑦𝑗𝑦′𝑗+1. . . 𝑦′𝑚−1𝑣𝑟+𝑖−1 be a shortest path between 𝑣𝑟+𝑖 and 𝑣𝑟+𝑖−1 in 𝐻 of 

length 𝑀 . Since 𝑣𝑟+𝑖−1𝑤𝑟+𝑖−1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑤𝑟+𝑖−1 ≠ 𝑣𝑟+𝑖  and 𝑤𝑟+𝑖−1 ≠ 𝑦′𝑚−1 . So 

𝑤𝑟+𝑖−1 = 𝑦1  and 𝑒(𝑤𝑟+𝑖−1) = 𝑀 − 1 . Since 𝑣𝑟+𝑖𝑤𝑟+𝑖 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑤𝑟+𝑖 ≠ 𝑣𝑟+𝑖−1  and 

𝑤𝑟+𝑖 ≠ 𝑦1. So 𝑤𝑟+𝑖 = 𝑦′𝑚−1 and 𝑒(𝑤𝑟+𝑖) = 𝑀 − 1. This implies that 𝑑𝐻(𝑤𝑟+𝑖−1, 𝑤𝑟+𝑖) =
𝑑𝐻(𝑦1, 𝑦′𝑚−1) < 𝑀 − 1  and 𝑤𝑟+𝑖−1𝑤𝑟+𝑖 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , a contradiction. Suppose 

𝑒(𝑣𝑟+𝑖+1) = 𝑀 . Then by case 1.1, 𝑤𝑟+𝑖−1𝑤𝑟+𝑖 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , a contradiction. Suppose 

𝑒(𝑣𝑟+𝑖) = 𝑀 − 1. Then 𝑒(𝑤𝑟+𝑖) = 𝑀. Since 𝑤𝑟+𝑖  is adjacent to 𝑤𝑟+𝑖−1, 𝑣𝑟+𝑖  and 𝑤𝑟+𝑖+1 

only, the eccentricity of any one of 𝑤𝑟+𝑖−1, 𝑤𝑟+𝑖+1  is 𝑀 . Suppose 𝑒(𝑤𝑟+𝑖−1) = 𝑀 . Let 

𝑃6: 𝑤𝑟+𝑖𝑦′′1𝑦′′2. . . 𝑦′′𝑚−1𝑤𝑟+𝑖−1 be a shortest path between 𝑤𝑟+𝑖 and 𝑤𝑟+𝑖−1 in 𝐻 of length 

𝑀 . Since 𝑤𝑟+𝑖−1𝑣𝑟+𝑖−1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)), 𝑣𝑟+𝑖−1 ≠ 𝑤𝑟+𝑖  and 𝑣𝑟+𝑖−1 ≠ 𝑦′′𝑚−1 . So 𝑣𝑟+𝑖−1 =
𝑦′′1  and 𝑒(𝑣𝑟+𝑖−1) = 𝑀 − 1 . Since 𝑤𝑟+𝑖𝑣𝑟+𝑖 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , 𝑣𝑟+𝑖 ≠ 𝑤𝑟+𝑖−1  and 𝑣𝑟+𝑖 ≠
𝑦′′1 . So 𝑣𝑟+𝑖 = 𝑦′′𝑚−1  and 𝑒(𝑣𝑟+𝑖) = 𝑀 − 1 . This implies that 𝑑𝐻(𝑣𝑟+𝑖−1, 𝑣𝑟+𝑖) =
𝑑𝐻(𝑦′′1, 𝑦′′𝑚−1) < 𝑀 − 1  and hence 𝑣𝑟+𝑖−1𝑣𝑟+𝑖 ∈ 𝐸(𝐴𝐸𝐹(𝐻))  a contradiction. Suppose 

𝑒(𝑤𝑟+𝑖+1) = 𝑀 . By case 1.1, 𝑣𝑟+𝑖𝑣𝑟+𝑖+1 ∈ 𝐸(𝐴𝐸𝐹(𝐻)) , a contradiction.                                                     

□ 
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