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1. INTRODUCTION

Throughout this paper, a graph means a non trivial simple graph. For other graph
theoretic notation and terminology, we follow [8,9]. Let G be a graph with vertex set V(G)
and edge set E(G). d(v) denotes the degree of a vertex v € V(G), the order of G is |V (G)]
and the size is |E(G)|. The distance d(u,v) between a pair of vertices u and v is the length
of a shortest path joining them. The eccentricity e(u) of a vertex u is the distance to a vertex
farthest from w. The radius r(G) of G is the minimum eccentricity among the eccentricities
of the vertices of G and the diameter d(G) of G is the maximum eccentricity among the
eccentricities of the vertices of G. Splitting graph S(G) of a graph G was introduced by
Sampath Kumar and Walikar [6]. For each vertex v of a graph G, take a new vertex v’ and
join v' to all the vertices of G adjacent to v. The graph S(G) thus obtained is called the
splitting graph of G. A vertex v is called an eccentric vertex of a vertex u if d(u,v) = e(u).
A vertex v of G is called an eccentric vertex of G if it is the eccentric vertex of some vertex
of G. Let S;(G) denote a subset of the vertex set of G such that e(u) =i forall u € V(G).
The concept of antipodal graph was initially introduced by Singleton [1] and was further
expanded by Aravamuthan and Rajendran [3,4]. The antipodal graph of a graph G, denoted by
A(G), is the graph on the same vertices as of G, two vertices being adjacent if the distance
between them is equal to the diameter of G. A graph is said to be antipodal if it is the antipodal
A(H) of some graph H. The concept of eccentric graph was introduced by Akiyama et al. [2].
The eccentric graph based on G is denoted by G, whose vertex set is V(G) and two vertices
u and v are adjacent in G, if d(u,v) = min{e(u), e(v)}. The concept of radial graph was
introduced by Kathiresan and Marimuthu [5]. The radial graph R(G) based on G has the
vertex set as in G and two vertices are adjacent if the distance between them is equal to the
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radius of G while G is connected. If G is disconnected, then two vertices are adjacent in
R(G) if they belong to different components of G. A graph G is called a radial graph if
R(H) = G for some graph H. Sathiyanandham and Arockiaraj introduced a new graph, called
F-average eccentric graph [7]. Two vertices u and v of a graph are said to be F-average
eccentric to each other if d(u,v) = [@J The F-average eccentric graph of a graph G,
denoted by AER(G), has the vertex set as in G and any two vertices u and v are adjacent in
AER(G) if either they are at a distance d(u,v) = [W] while G is connected or they

belong to different components while G is disconnected. A graph G is called a F-average
eccentric graph if AEz(H) = G for some graph H. In this paper, we find some sufficient
conditions for a disconnected graph to be or not to be a F-average eccentric graph.

Let F,, be the set of all connected graphs G for which r(G) = d(G) = 2.

Theorem A[7] Let G be a graph on n vertices. Then a vertex is a full degree vertex in
AER(G) if and only if either it is an isolated vertex or a full degree vertex or a non full degree
vertex adjacent to the full degree vertices only in G.

Theorem B[7] For any graph G € F,,, AE;(G) = G

2. RESULTS ON F-AVERAGE ECCENTRIC GRAPHS

Proposition 2.1. If G is a disconnected graph with no isolated vertex, then G is a F-average
eccentric graph.

Proof. By hypothesis, G €F,, and by Theorem B, AEF(E)EE=G
O

Theorem 2.2. If G is a disconnected graph having a component of the form K, ,. . —
E(K,) where r,15,...,1, are positive integers, then G isa F- average eccentric graph.
Proof. In K, , ., letV; = {v(‘),vz(‘),...,vr(i‘)} be the it" partition of K, 1<i<n.

LT 2T
Let V(K,) ={u; €V;:i =1,2,...,n}. By graph symmetry, assume that u; = vl(i) for each
i=12,...,nand E(K,) = {vl(‘)vl(k) i #k,1<ik<n}. Construct H from G as follows:
Hy, H, are two partitions of K,. ,, . and V(Hs3) =V (G) —V(Ky 1, .r, — E(Kn)) Where
V() =P evp2<j <, 1<i<n} and V(H,) ={v’ €V:l<i<n}. E(H)=
wOrP2<j<n1<i<nupPwiw e V(H;) 1 <i<nju

EG = (Kpppyrn —E(K). For 2<j<mand 1<i<n, e(w) =4, e(”) =3 and
the eccentricities of the remaining vertices of H are 2. Also dH(v(”, ](,")) =4,

dy (02, v =3, dy(w”, ") =1 and dy (W, vy =2 for 2<j <, 2<) <n,
i#kand 1<ik<n, dy(v,u) =2 and dy(v”,u) =1 for ueV(Hs), 2<j <7
and 1 <i<n, dy(v,w) =2 for every non adjacent pairs of vertices v and w in V(Hj3).
e(v](-”)+e(v,g())| d, (v (0 (k)) _ E(V,(-l))ze(vgk))|

for 2 <

This implies that dH(v(l) (k)) —{ . 1y

j<r, 2<j'<n,i+kand 1<ik<n, dy(uw)= [@J for every non adjacent
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pairs of vertices u and w in V(H;) . Also dH(vj(i),v(i))< and

e(vj(.i)) +e(v§i))|

. ® (k) ,
dy (0@, v®) < [%J for 2<j<mizk and 1<ik<n, dy(w®u) <

le (U](-i))‘*'e(u) e(vii))+e(u)
2

and dy(v”,u) < [ -

J for ueV(Hz), 2<j<r and 1<i<n,

dy(u,w) < le for every adjacent pairs of vertices u and w in V(H3). Hence
E(AE(H)={v v? v v 2 <j<m2<j <myi# k1<ik <n}UEH)=E(G).
Thus G is a F - average eccentric graph.
O

Corollary 2.3. If G is a disconnected graph having a component of the form K, ,, — e where
m and n are positive integers, then G is a F- average eccentric graph.

Proof. By  taking p=2 in  Theorem 2.2, the result  follows.
O

Corollary 2.4. If G is a disconnected graph having P, as a component, then G is a F-
average eccentric graph.

Proof. Since P, =K,,—e , by Corollary 23, the result follows.
O

Corollary 2.5. If G isadisconnected graph having a component of the form S(K,,,), m being
a positive integer > 3, then G is a F- average eccentric graph.

Proof. By taking n=m and r, =r, =...=n, = 2 in Theorem 2.2, the result follows.
O

.....

Let V; = {v(i),vz(i),...,vr(ii)} be the i*" partition of K, .,
deleting all the edges between the successive m!" and m{", partitions of Kyiryr, N Q

.....

cyclic manner, the resulting graph is denoted as K(™™2-™)  That js, K™z =

1,12, T1,12,Tn

_ £, (M) (Meyq),  (My) _  (My11) ; : '
Keiryoitm {vjt vj,, v, = 1<ji<tm,1<jy<typ,,1stt' <1} for
. (1,2,,mm) _ ). (t+1), (1) _ . (m+1)
1<my<n, 2<l<n Inparticular K. 7> =K. v, r, —{v; v, v, =y, 1<

JE<r,1<j' <141,1<t<m} for 2<m <n. Let vy,vy,..., V-1 be the vertices of a
complete graph K,,, m =3 and w;, 0 <i <m — 1, be the duplicating vertices of v;,0 <
i <m — 1 respectively. Suppose that v,,,; = v;,0 <i <m —1. Then the graph S(K,,) —
{v;v;_1,V;Vi41:0 < i < n} is denoted by S'(K,;,). Thatis, S'(K,,) = Kz(llz'f’.;gm)

Theorem 2.6. If G is a disconnected graph having a component of the form Kr(:n_r;_’fi?’l‘"’m’) for
1<m,l<n, 1<t<I, n=4 andatleastone pair of positive numbersin {my,m,,...,m;}
is not equal, then G is a F- average eccentric graph.

Proof. In Kr(zf’r;:fﬁ;"‘ml), vV, = {v(i),vz(i),...,vr(ii)} is the i*" partition of Kyigyw, TOr 1<
i <n. Construct H from G as follows: Let H, and H, be two partitions of Kr(fr;’:'_fi;l'"’ml)

where V(H) = (v’ €Vz2<j<n,1<i<n} and V(Hy) ={v’ €Vz1<i<n}. Let
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V(H3) =V(G) — V(K(m1 M2 ml)) and E(H) = {v(l)vl(l),vl(mt)vl(mt“) My =M, 2 < j <

1,72,

l<ime<nl<t<Bu{pdw:iweV(Hy)l<i<n}UEG—K™™m™)y  For

1,72,

2<j<nand 1<i<n, e(v.(i)) =4, e(v(i)) = 3 and the eccentricities of the remaining
vertices of H are 2. Also dH(v(mt) (k)) =4, dy (v(l), (”)) =4,d (v(mt) vy =3,
dH(v'(ll); 11/)) =3, dH(vj(mt)'v]'(lT/nt+1)) =3, dH(vj(ZS) (S)) =2 dH(vj(mt) vl(mt+1)) —
2,dy (v, v =1, dy(™,v"*) =1 and dH(v(mt) N =2 for 2<j<ry,,,
2<j' <, 2" <ty  2Sj1 <1, 25y S1y, Jo#Fjo 25 o j S0, m =

Mipe », Mo=my , k#Eme,memey, ; 1<t<l, i#i, i+m#i and 1<
L1k sme <, dy(vw) =2 and dy(v,u) =1 for u € V(Hy)2 < j, <7y and 1<
s<n, dy(v,w) =2 for every non adjacent pairs of vertices v and w in V(H3). This

Moy, o () 0)
e( )te(vj,”) ' e(v;")+e(v;, ")
implies that dH(v(mf) (k)) =4= lf| dy( ](‘), ](f N=4= [f|

(mg) k) ® @n
e ") +ew) e D)+
dy (™, ) = 3 = —| L dy(w, ) =3 = \—e(”f e )| for 2<j <

2 2

Tmer 25 S, 2y Sy, 20 Sy, My =y, Mo =My, K #E Mg, My, Mgy
1<t<l,i#i,i+zm#i and 1<i,i’kkm,<n, dy(v,w)=2= [e(v)+e(w)J for
every non adjacent pairs of vertices u and w in V(H3). Also dH(v(mt) (mt“)) =3<

]II
(me) (mg41) (mt) (mg41)
ew; “)te(w;, ") e(v; “)+e(v; )
2 : | ) dH(vj(mt)Jv1mt+1)) =2< |

Ay ) =1<

() (s) (mg) (k)
e(v )+e(v ) k e(v t)+e(v )

’ L dy ™, 1())=2<l L Jvete; L AP =2<
| (S) (s) i i1
e(v )+e(v ) : ; ® i

. jr2 | 1 dH(U(l),Ul(u)) =2 < le(vl )‘;e(lﬁ )J and dH(v(mt) 1(mt+1)) =1<
0, (M) (Me41)
e(vy )+2€(U1 )J for 2 <] <r m 2 <] < T 2 <JH < Tmt+ 2 <]1 r; 2 Sjll <

«]

Tzn J2#J2, 2<jpj2a S, mp=mye, mop=my, kEFme_,me,meyq; 1St <1 i+ T

@ rew
i+m,#i and 1<i,i',k,s,m; <n, dH(vj(:),u) =2< {%' and dH(v(s),u) =

)
1<[MJ for u€V(H)2<jp <7 and 1<s<n, dy(v,w)=1< |22
for every adjacent pairs of vertices v and w in V(H3) . Hence
EAER(H)) = (v™v v v, v vDu2<j<n, 2<) <m,2< ) <

r,2<j <r,m;= My, Mo = my, k # m;_ 1,mt,mt+1,1 St<Li#i,i+tm#
i’y1<i,i ksm <n}UE(H;) =E(G). Thus G is a F - average eccentric graph.
O

Corollary 2.7. If G is a disconnected graph having a component of the form Kr(11‘,rzz,,.....l,,(rm—1),m)
for 1 <m <n and n > 4, then G isa F-average eccentric graph.

Corollary 2.8. If G isadisconnected graph having a component of the form S'(K,,,), m being
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a positive integer > 4, then G is a F- average eccentric graph.

Theorem 2.9. If G is (n—7r)K; U G, on n vertices where r(G;) =1and 1 <r<n-1,
then G isnota F-average eccentric graph.

Proof. Suppose r(G;) =1 and d(G;) = 2. Let uy,u,,...,u; be the full degree vertices,
Uj41, Ups2, -+ -, Uy DE the non full degree vertices in G; and u, 41, Up42,..., U, be the isolated
vertices in G. Suppose there exists a graph H such that AEx(H) = G. If H is disconnected,

then each component of AE-(H) is complete, a contradictionto G € F,,. So H is connected.
By the definition, each of w,,q,ur45,..., U, has no F- average eccentric vertices in H. If H
has a full degree vertex, then by Theorem A, AEr(H) has a full degree vertex, a contradiction.
So r(H)=2. If e(w)) =d(H) for r+1<j<mn, then u; is not an isolated vertex in
AEp(H) , a contradiction. Therefore 1 <e(w;)) <d(H) for r+1<j<n and hence
e(u;) = d(H) forsome i =1,2,...,r.

Case 1. Suppose e(u;) =d(H)=M for some i,1<i<Il. Since u; is adjacent to
U, Up,yeeey U1, Uigq, -, U INAER(H), any one in {uq, uy,...,Ui—1, Ujzq,.--,U} IS the
antipodal vertex of u; in H.

Case 1.1. Suppose dy(u;, uj+1) = M. Let u;x;x,.... xym_1U;+1 be a diameteral path between
u; and u;4q in H. Then e(u;;,) = M. Since u;u, € E(AER(H)) for i #k,i=12,...,1
and k=12,....LL+1,...,7, xp €{us,uy,...,u} for h=1,2,...,m— 1. Therefore x, €
{Urst Upszs o upy for k=12,...m—1. If xp,_; =y; and e(uy)) =M -1 forr+1<
J < n, then w;u; € E(AER(H)), a contradiction. Hence x,,,_; € V(H), a contradiction.

Case 1.2. Suppose dy(u;, u;41) = M. Let w;y1y,.... Vm—1U;+1 be a diameteral path between
u; and u;44 in H. Then e(u;4,) = M. Since u;u, € E(AEp(H)) for i #k,i=12,...,1
and k=1,2,....L,L+1,...,r, y, €{u,uy,...,u} for h=1,2,...,m—1. Therefore y, €
V(H) — {uy, up,...,u} for h=12,...,m—1. Let yp,_; =, and e(w,) =M —1 for
some ky=1+2,1+3,...,r . Since wuy, €EAEF(H)) , Ym-1 €EV(H)—
{uy,uy,...,u,}. Hence w;y,,_, € E(AEz(H)), a contradiction to the fact that y,,_; is an
isolated vertex in AEx(H).

Case 2. Suppose e(uyp) =d(H)=M for |+1<k<r. Since u, is adjacent to
Uy, Uy,...,u; and w, for some k'=I1+1,1+4+2,...,r , any one in
{ug, ug, .., U Upgeq, oo, U, Ugs1, - - Up} IS the antipodal vertex of w, in H . Suppose
dy(Up, Uky1) = M and ugz,2;...Zyn_q U4+, 1S @ diameteral path between wu, and ug,, in
H.Then e(ug4+1) = M. Since w;u, € E(AEp(H)) for i =1,2,...,1, z,, € {us,u,,...,u;} for
h=1,2,...,m—1. Therefore z, € V(H) — {us,uy,...,u;} . SUppose z,,_; = u,, and
e(up,)=M—1 for k' =1+1,1+2,...,r. Since u;uy, and wu, € E(AEr(H)) for i =
1,2,...,1, wz, € E(AEr(H)) for h' =2,3,...,m—2, a contradiction. If z, € V(H) —
{us, up, ..., u,}, then z, = u; for some j =r,7+1,...,n and hence u,u; € E(AEr(H)), a
contradiction to the fact that uy, is an isolated vertex in AEz(H). Thus AEr(H) is not equal
to G, a contradiction.

Suppose r(G;) =1 and d(G;) = 1. Then uy,u,,...,u, arethe full degree vertices of
G,. Suppose there exists a graph H such that AEx(H) = G. If H is disconnected, then each

component of AE-(H) is complete, a contradiction to G € F;,. So H must be connected. By
the definition, each of w,,4,u,45,...,u, hasno F- average eccentric vertices in H. If H has
a full degree vertex, then by Theorem A, AEz(H) has a full degree vertex, a contradiction. So
r(H) = 2. If e(u;) = d(H) for some j, r + 1 < j < n, then w; is not an isolated vertex in
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AEp(H), a contradiction. Therefore 1 <e(u;) <d(H) for r+1<j<n and hence
e(u;) =d(H) for some i=1,2,...,r. Let e(w;) =d(H) =M. Since u; is adjacent to
U, Uy ooy Ujg, Ujg, - Uy INAER(H), any one in {uy,uy, ..., U1, Ujz1,---, Uy} 1S the
antipodal vertex of w; in H. Suppose dy(u;uir1) =M and u;x{Xp...X;p;m_1Uip1 1S @
diameteral path between u; and u;,,. Then e(u;,1) = M. Since u;u, € E(AEz(H)) for i #
k1<ik<r , x,2{u,uy...,u.} for h=12,....m—1 . Therefore x,€
{Upy1, Upyo, ..., uy} for h=12,....m—1. Hence u;xp,_1,xu;4; € E(AEF(H)) , a
contradiction to the fact that x; and x,,_, are isolated vertices in AEp(H). Thus AEx(H) is
not equal to G, a contradiction. m

Theorem 2.10. Let G = rK; U G* U G, U G, U...U G, be a disconnected graph such that r >
1, G™ is asquare free component having a cycle of length |G*| =t = 3 and each G; isalso a
square free component and non isomorphic to P, for 1 <i < p. Then G is not a F-average
eccentric graph.

Proof. Let vy, v,,..., v, be the isolated vertices, v, 1, Vy42,..., Vryr D€ the vertices of G*
and Vi, 410 Vrsttr,_ 420+ Ureeer; D€ the vertices of the component G;, 1<i<p
where 1, = 0. Suppose there exists a graph H such that AEp(H) = G. If H is disconnected,

then each component of AE-(H) is complete, a contradictionto G € F,,. So H is connected.
By the definition, each of v, v,,...,v,. hasno F- average eccentric verticesin H. If H has a
full degree vertex, then by Theorem A, AE(H) has a full degree vertex, a contradiction. So
r(H) = 2.

Case 1. t = 5. Since v,,; and v,,;,, are adjacent in AEx(H) for 1 <i<t—1,thereisa

shortest path between v,.,; and v,,;., in H of length [e(””")f(””"“)].

Case 1.1. Suppose e(v,;;) + e(vr4i41) IS €ven and e(””")f(”””l) =M. If e(vyy) #
e(Wryiv1) » then  dy(WriyVryis)) <M . SO e(Vpy) =M = e_(vr+i+1) . Let
Py Uy iX1X5. .. X;m_1Vr4i+1 D€ @ shortest path between v,,; and v, ;. in H of length M.
Suppose v,,; and v,,, are adjacent in AEp(H) for k=i+2,i+4,i+5,...,t. Since
Vr+iVr+k EE(AEF(H)) v Urak F Vriis1 and Vrik # X1 So Ur+k = Xm-1 - Since
Vryit1Vrsivz € E(AER(H)) , Vryipz # Vg @A Vpyiyn # Xipoq - SO Vpgyyp = X1 aNd
e(Vyyivz) =M —1. Then v, ;.3 is a vertex in V(H) — {Vy4i, X1, X2, - o) Xm—1, Urgiz1}- If
Vyyirs € {V1,V,,..., 1.}, then any one of vy, v,,..., v, is not an isolated vertex in AEp(H)
which is impossible. If v, ;15 = Vyryrir, ,+j € V(Gy) for some k and j, 1 <j<m7, and
1<k<p, then v,y i3Vrit4r,_,+j € E(AER(H)) , a contradiction. SO v,,i43 €
Vriv Vrrzr o Vraed — (Vi X1, X200 Xine1, Vrgira} - Then dH(Vr+ir_Vr+i+3) =M ar!d
hence Ur+iVr+i+3 € _E(AEF(H)) . Hence vy iVryiv1VrrivaVrivaVrys 1S @ Cycle Cy in
AEr(H), a contradiction.
: e(Vr+i)+eWryit1)

Case 1.2. Suppose e(v,y4;) + e(vy4iy1) IS 0dd and l > J =M — 1. Then the

eccentricity of any one of v,,; and v, ;., IS M —1. Let e(Vy4;41) =M —1. Then
dy(Vriis Vrsiv1) =M — 1 and e(v,4;) = M. So v,,; is adjacent to atleast one vertex v, ;
in AEp(H) for some j, j=i+2,i+4,i+5,...,t whose eccentricity is M . Let
Py: Vp 4 iWiWy... W1V, b @ shortest path between v,..; and v,,; in H of length M. If
Vryj = Uryivz, then v 04040 € E(AER(H)). SINCE Vpyi11Vryiv2 € E(AER(H)), Vryiq #
Wim—1 and Vpiipq1 # Vpyi. SO Vpyjp1 =wy and v,,;v,4:41 € E(H), a contradiction to
VryiVryis1 € E(AER(H)). Assume that i+4 <j<t. Since v,,;_1Vr;; € E(AER(H)),
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Vppjo1 F Vpgq ANd Vpyjq F Wyq . SO Vpyjq =wy and e(vp4j—q) =M —1. Since
VrtiVryivr € E(AER(H)) | Vpyiy1 # Vpyj @A Vpyyyq F Wy o SO Vpyyyq = Wy and
e(Vryir1) =M —1 . SinCe  Vpyi41Vryiv2 € E(AER(H)) and  vpyi49Vp4 € E(H)

e(Vrviv2) =M . This implies that di(Vr+iv2 Vrej) = Adg(Vrsivz, Vrsivn)

iy (Vpsin, V) = [FEEEEER] 4 1 = M SO vy € E(AER(H)) . Hence

Vrii Urtis1Vr+is2Vr+jVrsi 18 @ Cycle Cy in AER(H), a contradiction. If e(v,4;) =M — 1,
then dy(Vyyi, Vpyivi) =M —1 and e(vy4;41) = M. SO v,,;,, IS adjacent to atleast one
vertex v,,, in AEg(H) for some k, k =i+ 3,i+5,i +6,...,t whose eccentricity is M.
Let P3:Vpyjp1V1Y2--- Ym-1Vr+k D€ @ shortest path between v,,;., and v,,, in H of length
M. vy = Vryirs, then vy 104443 € E(AER(H)). SINCE Vryi1oVr4ivs € E(AER(H)),
Vrtitz # Ym-1 @ Vrgipo F Vpgigr - SO Vpypp =¥1 aNd VpyyyqVpyiy2 € E(H)

contradiction t0 v,y 1Vryis2 € E(AER(H)) . Assume that i+5<k<t . Since
Vrik-1Vr+k € E(AER(H)), Vrpg—1 # Vryirr ANd Vpgg g # Y1+ SO Vpyp—1 =y1 and
e(Vr4j-1) =M — 1. Since Vpyi41Vryiv2 € E(AEF(H)), Vrtite # Vryk ANd Vpyiin # 5.
SO Vrtivz =¥m-1 and e(Wriip2) =M —1 . SinCe VyyiyyVryir3 € E(AER(H)) and
Vryiv2Vrak EE(H) . e(Wryiy3) =M . This  implies  that  dpy(Vryi43 Vrgk) =

e(Wryivz)teWriitn)
Ay (Vrsiv3 Vrvivz) FAgWriivz, Vrk) = l S > S J +1=M. SO Vpyi43Vrsk €

E(AEr(H)) . Hence vyiiy1VrtivaVrtitsVrekVreiva 1S @ Cycle Cp in AEp(H) ,
contradiction.

Case 2. t = 3. In this case, V,,iVyrtis1Vrsis2 1S atriangle in AEp(H) Where v, i13 = Uy
for 1 <i < 3. Since v,,;V,4i+1 € E(AER(H)), there is a shortest path between v,,; and

Vy4ivq1 IN H of length le(”r+l)+e(vr+1+1)J

Case 2.1. Suppose e(vy;) + e(Vy4i+1) IS even and [e(””")f(v”"“)J =M. If e(vyy) #

e(Wriv1) » then  dy(VrypVrpis) <M . SO e(Vpy) =M = e_(vr+i+1) . Let
Py: v, iWiW,. . W, _1 V441 D€ a shortest path between v,,; and v,,;,; in H of length M.
Since Vryi11Vryivz € E(AER(H)), Vryivo # Vpyy AN Vpgipn # Wi . SO Uy =Wy
and v,,;Vr4i42 € E(H), acontradiction to v,,;Vy4;42 € E(AEr(H)).

Case 2.2. Suppose e(V,4;) + e(Vy4i41) is 0odd and [e(v”‘)”(v”‘“)J M — 1. In this case,

the eccentricity of any one of v,,;,Vyyipq IS M—1. Let e(v,,;)) =M —1. Then
e(Wryir1) =M and e(Vy4i42) = M. Let P5:Vr+i+2W’1W,2---W’iWi+1---_Wm—lvr+i+1 be a
shortest path between v,,;., and wv,,;,; in H of length M . Since v,,;Vy;;41 €
E(AEp(H)), Vryi # Vryivz AN Vpyy # Wiy SO Vpy; = W'y and vpy4,0ry; € E(H), @
contradiction to v, ;42Vr4+; € E(AEr(H)). Suppose e(Vy4i41) = M — 1. Then e(v,4;) = M
and hence e(v,,i4+2) =M. As in Case 2.1, AEz(H) is not equal to G, a contradiction.
O

Theorem 2.11. Let G =rK; UK 1, ¢+ UGy UG, U...U G, be a disconnected such that r
and t; being postive integers, 1 <i <n, n = 2 and each G; is a square free component and

non isomorphicto P, for 1 < j < p. Then G is nota F-average eccentric graph.
Proof. Assume that t; + t,+...+t, = t. Let vy, v,,..., v, betheisolated vertices of G, V; =

w® vz(l),...,vr(ii)} be the ** partition of K., . for 1<i<n , and
Vritarj_y+1 Vreterj_g 420 Vriter; be the vertices of the component G; for 1 <j<p
where 1, = 0. Suppose there exists a graph H such that AEx(H) = G. If H is disconnected,
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then each component of AE-(H) is complete, a contradictionto G € F,,. So H is connected.
By the definition, each of v,,v,,...,v,. hasno F- average eccentric vertices in H. If H has a
full degree vertex, then by Theorem A, AEr(H) has a full degree vertex, a contradiction. So

r(H) = 2. Since v ) and v(]) are adjacent in AEp(H) for 1< h; <t;,1<h, <t,i#]

and 1<i,j<n, there is a shortest path between v() and v(’) in H of length

e(v(l) )+e(v(]) )
2

e(vgl)l)+e(vm )

Case 1. Suppose e(v(i)) + e(v(j)) is even and Mt = M. I e(v, )) * e(v(’))
then dH(v(i)1 (1)) <M. So e(vm) = —e(v(])) Let P;: v()xlxz Ky 1vt(]) be a
shortest path between v(l) and v(J) in H of length M. Since Vt(,? vt(:) € E(AEr(H)) for
1<h <t 1<h3<tk, i+k and 1<ik<n, v()ivt(;) and vth3 * x1. SO v(k)

Xp_y and e(vtk)) =M —1. Since vt(]) O € E(AEp(H)) for 1<h, <t,1<h, s t,
j#land 1<j,1<n, (Z) + vt(l) and v(l) # Xp_1. SO v(l) = x, . This implies that

4y (0 ”th)) = dy (g, X 1) <M -1 and v(k) - E(AEF(H)) a contradiction.
6)]
)

@ )+e(vth
2

. . e(v
Case 2. If e(”t(:l)) + e(vt(i)) is odd and lthlf = M — 1, then the eccentricity of any
2

one of v(l) vt(’) is M—1. Let e(vt(j)) =M —1. Then dH(vt(}?,vt(I{)) =M-1 and
1 2

e(vt‘)) = M So vt(‘) is adjacent to at least one vertex v(s) in AEp(H), forsome s #i,1 <

s<nand 1< hg <t;, whose eccentr|C|ty is M. As in Case 1, AEx(H) is notequal to G, a

contradiction. Suppose e(vtl)) = M — 1. Then e(vt(’)) = M. So v(’) is adjacent to at least

one vertex v(g) in AER(H),forsome g # j,1 < g <n and 1 < hy < t;, whose eccentricity

is M. As in Case 1, AEr(H) is not equal to G, a contradiction. Thus G is not a F-average
eccentric graph. m

Corollary 2.12. Let ¢ =7K; UK, UG; U G, U...U G, be a disconnected graph such that
n >3 and r > 1, each G; is a square free component and non isomorphicto P, for 1 <i <
p and |V(G;)| =1; for 1 <i < p. Then G isnota F-average eccentric graph.

Proof. By taking t; =t, =...=t, =1 in Theorem 2.11, G is not a F-average eccentric
graph.o

Theorem 2.13. If G is a disconnected graph with each component complete having at least
one isolated vertex, then G is nota F-average eccentric graph.

Proof. Suppose rK; UK, UK, U...UK, where r; >3, r>1 and 1<i<p. Assume
that r +n+...+1, =t . Let uy,u,,...,u, be the isolated vertices of G ,
Upsr, 41 Ursr,_ +2,- - Urgr, DEthe verticesof K., 1 < i <p where r, = 0. Suppose there
exists a graph H such that AEx(H) = G. If H is disconnected, then each component of

AEr(H) is complete, a contradiction to G € F;,. So H is connected. By the definition, each
of uy,u,,...,u, hasno F-average eccentric vertices in H. If H has a full degree vertex, then
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by Theorem A, AEr(H) has a full degree vertex, a contradiction. So r(H) = 2. If e(u;,) =
d(H) for 1 <i' <r,then y; isnotan isolated vertex in AEr(H), a contradiction. Therefore
1<e(u;) <d(H) for 1<i'<r and e(u;) =d(H) for some i =r+1,r+2,...,t. Let
Upyr,_,+j DEAVErtexin V(K,,) suchthat e(urir,  +;) =d(H) =M and Upyp, , = Upyy, IN

V(K,) for some j=12,..1n—1_4 . Sincé U, ,; Is adjacent to
Urtri g+ Urdr_g+20 o Urdry 4 j—0 Urdr; g +j+10 -0 Urgr; in AEF(H)’ any one in
{(Ursr, 40 Urgr_ 420+ o0 Urgry_ 4j—1 Urdr,_ +j+10+ - Urgr ) 1S the antipodal vertex of
Urir_+j in H : Suppose Ay (Ursr_ g+ Urtr_+j+1) = M : Let

P:iUpyr,  4jX1 X Xmo1Upsr,_ +j+1 D€ @ diameteral path between wu,,. ,; and
ur+ri_1+j+1 in H . Then e(ur+ri_1+j+1) = M . Since ur+ri_1+juk E E(AEF(H)) fOr T +
rioa+j+k , r+r . +1<r+nr_1+j,k<r+n , 1<i<p ,
Xp € {Upsr, 41 Ursr,_ 42+ Urpry O h=12,...,m—1 and 1<i<p . Therefore
Xh E {ul, uZ,...,ur} fOf h = 1,2,...,m - 1 and ur+ri_1+jxm_1, X1ur+ri_1+j+1 E
E(AE-(H)) , a contradiction.Thus G is not a F -average eccentric graph.
O

Theorem 2.14. If G is rK; UG, UGy, U...U G123, 1r21 and 1 <i<p,then G is
not a F-average eccentric graph.

Proof. Assume that r; + r,+...+7, = t. Let uy,u,,...,u, be the isolated vertices of G,
Upgr;_+1 Ursr,_ +20- - Ursr, DEthe verticesonthe cycle C,, 1 < i <p where 1, = 0. If G
has a triangle of length 3, then by Theorem 2.13, G is not a F-average eccentric graph. Let
t > 4. Suppose there existsagraph H suchthat AEx(H) = G. If H isdisconnected, then each
component of AE-(H) is complete, a contradiction to G € F;,. So H is connected. By the
definition, each of uy,u,,...,u, has no F- average eccentric vertices in H. If H has a full
degree vertex, then by Theorem A, AEr(H) has a full degree vertex, a contradiction. So
r(H) = 2. If e(uy,) =d(H) for 1 <i' <r, then u;, is not an isolated vertex in AEz(H), a
contradiction. Therefore 1 < e(u;) <d(H) for 1 <i'<r and e(u;) = d(H) for some
i=r+1,r+2,..,tLet u, ,;beavertexin V(C,) suchthat e(urir,_ +;) =d(H) =
M and Uy yr, | = Upyy, in V() forsome j =1,2,...1; — 1r;_4. Since u,,,,  ; isadjacent
0 Upir,_y4j-1 AN Upyr,  1jrq ONlY N AER(H), any one in {Upir,_ 4j-1, Ursr,_ +j+1} 1S
the antipodal vertex of u,,,, +; inH. Suppose dy(Upsr,_,+jo Ursr,_+j+1) = M. Let

PiUpyr,  +jX1%2. X1

Upyr,_,+j+1 D€ @ diameteral path between u,,, .; and Ui, 441 In H . Then
e(Ursri_y+j+1) =M . SINCE Upiy, 4 qUryr,_ +j € E(AER(H)) , Upyr,_ +j-1 # X1 and
Uptr;_q+j-1 F Urgr_ +j+1 - So Urtri_1+j-1 = Xm-1 and e(ur+ri_1+j—1) =M —1. Since
Urtri_g+j+1riri_g+j+2 € EQAER(H)), Urir_4j+2 F Xme1 AN Upir, 4je2 F Uppry_ +)-
SO Upyr,_y+j+z = X1 ANd €(Upyr,_ 4j42) =M — 1.

Case 1. Suppose G has a cycle C,, of length =5. Since e(Urir, 4+jr2) =M —1,

Urir,_,+j+3 € V(H) — {ur+rl-_1+j:x1:x2'---'xm—l'ur+ri_1+j+1} Af Urir;_,+j+3 €
{uy,uy,...,u,} , then any one of uy,u,,...,u, is not an isolated vertex in AEr(H), a
contradiction. So Upsr, o +j+3 € (Urgt, Urgy oo U} — {Urir_ +j
X1, X200 Xme1 Urarg_g+j+r - INeN  dy(Urir,_ 4j Ursr_+j+3) =M . Hence

Uryr,_,+jUrsr,_,+j+3 € E(AEp(H)), a contradiction.
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Case 2. Suppose G has_ a cycle C,, of Ieng_th 4. Then Urtryytj=1Urar g+ jUrar_g i+l
Urpri_q+j+2Urtr_+j-1 1S @ cycle Cri =, in AEp(H) and Urgr;_y = Upygr; IN V(Cri)

fOI‘ ] = 1,2,3,4 . SO dH(ur+rl._1+j+2, ur+ri_1+j_1) == dH(xl, xm_l) < M - 1 al’ld
Upgr_ +j—1Ursr_ +j+2 Z E(AEz(H)) , a contradiction.
O

Theorem 2.15. Let ¢ = rK; U C; U G, U G, U...U G, be a disconnected graph such that r >
1, t = 3 and each G; is a square free component and non isomorphic to P, for 1 <i < p.
Then G is not a F-average eccentric graph.

Proof. Let vy, v,,..., v, be the isolated vertices, v, .1, Vy42,..., Vrqp D€ the vertices on the
cycle Cp and Vryir, 41, Vrater, 420+ Vreesr; DE the vertices of the component G;, 1 <
i <p where ry =0. Suppose there exists a graph H such that AEz(H)=G. If H is

disconnected, then each component of AE(H) is complete, a contradictionto G € F;,. So H
is connected. By the definition, each of v, v,,..., v, has no F- average eccentric vertices in
H. If H has a full degree vertex, then by Theorem A, AEz(H) has a full degree vertex, a
contradiction. So r(H) > 2.

Casel. t =3 or t = 5. Then by Theorem 2.10, G is not a F-average eccentric graph.

Case 2. t = 4. In this case, V,,iVrtis1Vr+is2Vr+it3Vrsi 1S @ Cycle C, in AER(H) where
Vpyiva = Upyy TOr 1 <i<4. Since v, ;v,4i41 € E(AER(H)), there is a shortest path

between v,,; and v,,;4, in H of length [e("”i”ze(v””l)

Case 2.1. Suppose e(v,4;) + e(v,4i+1) iSevenand [
If e(Vr4i) # e(Wrriv1) s then dy(Vryy, Vryivr) <M. SO e(Vry) = M = e(Vp4441) . Let
Pi: Uy iWiW,. .. Wy _1Vypi41 D€ @ shortest path between v,,; and v,,;,, In H of length M.
SiNCe Vyyit1Vrivz € E(AE_'F(H))7 Ursivz F Vpgi AN Vpyip # Wi o SO Vpyjpp = Wy
and e(Vyyi42) =M — 1. SinCe VyyVpyiy3 € E(AER(H)), Vryiyz # Vrpigr ANd Vpyyis #
Wi. SO Vyyizz = Wpy_q and e(vy4i43) = M — 1. This implies that dy(Vyyiz2, Vryivs) =
dy(Wy, Wy—1) <M —1 and v,,;42Vr4i43 € E(AER(H)), a contradiction.

Case 2.2. Suppose e(vy1;) + e(Vy4i41) is 0dd and [e(v”‘)”(v”‘“)J M — 1. In this case,

the eccentricity of any one of v,,;,Vyyipq IS M—1. Let e(v,;;)) =M —1. Then
e(Vyyiv1) = M. Since v,,;., IS adjacent to v,,; and v, ;4o Only, e(Vyyip2) = M. Let
Py VW W 5 o W Wiy ... W1 Vp4 41 DE @ Shortest path between v, ;., and v, ;.4 in
H of length M. Since v, iV, yiv1 € E(AER(H)), Vpyi # Vpyizo aNd Vpyy # Wyy_q. SO
Vrpi = W'y and e(vyy) = M — 1. SiNCe Vryi42Vryi4s € E(AEF(H)), Vrtirs # Vrpirr @Nd
Vyyiezs W1 . SO Vpyiy3 =Wpq and e(Vyyi43) =M —1 . This implies that
Ay (Vysis Vpyivs) = dgW',wi_1) < M — 1 and v, ;v,443 € E(AER(H)), a contradiction.
Suppose e(Vy4i41) = M — 1. Then e(v,,;) = M and hence e(v,4;+3) = M. Asin Case 2.1,
AEp(H) IS not equal to G , a contradiction.
O

e(Ur+i)+e("r+i+1)J =M
- .

Theorem 2.16. Let G =rK; UT, U G; U G, U...U G, be a disconnected such that » > 1, a
tree T, on t > 5 vertices as a component having a path on length 4 and each G; is a square
free component and non isomorphicto P, for 1 < i < p.Then G isnota F-average eccentric
graph.

Proof. Let vy, v,,..., v, be the isolated vertices, v, 1, Vy40,..., V4 D€ the vertices on the
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cycle Ty and vyyipr, 41, Vrsesr,_ +2:---» Vrecsr; D€ the vertices of the component G;, 1 <
i <p where ry =0. Suppose there exists a graph H such that AEx(H)=G. If H is
disconnected, then each component of AE(H) is complete, a contradictionto G € F;,. So H
is connected. By the definition, each of vy, v,,..., v, has no F- average eccentric vertices in
H. If H has a full degree vertex, then by Theorem A, AEr(H) has a full degree vertex, a
contradiction. So r(H) = 2. Let vy, Vrij, Vryks Vrsts Vram D€ the consecutive adjacent
vertices of T;. Since v,,; and v, are adjacentin AEr(H), there is a shortest path between

Vpyj and v, in H of length [WJ

Case 1. Suppose e(vr4 ) + e(vy4) is even or odd.

Case 1.1. Suppose e(v,.j)+ e(vri) is even and sz. If e(vry) #

e(Wryr) » then  dy(Vyjvrp ) <M . SO e(Vpy;)) =M =e(vry,) . Let
Pi:VpyjX1Xp. .. Xm—1Vrqi DE @ shortest path between v,.; and v, in H of length M.
Since VyixVpy € E(AER(H)) , Vpyy # Vpy; and vy # Xpog . SO vy =x; and
e(Vyp)) =M — 1. Suppose e(Vyym) =M — 1. Let Py vy 1 XoX5... XX 14100 o X ne1Vpsm DE
a shortest path between v,,; and v,,,, in H of length M —1. This implies that
Ay (Vs Vram) = AWy Vrar) + dg(Uri, Vram) = M and VrtjVrsm € E(AER(H)) , a
contradiction. If e(vy4n) =M, then dy(vrij, Vrym) > M which is impossible since
e(Vryj) = M.

Case 1.2. If e(v,4;) + e(vr4x) is0dd and lWJ = M — 1, then the eccentricity of
any one of v, vy, is M — 1. Let e(v4) =M — 1. Then dy(vr4j, vpyx) =M — 1 and
e(vr4j) = M. So v, is adjacent to at least one vertex v, ;- € T, whose eccentricity is M.
Let Py:vpyjy1Y2. .. Ym-1Vr4j« D€ ashortest path between v, ; and v, ;- in H oflength M.
Since vy, jVrik € E(AER(H)), Vypyg # Vpyjr AN Vpyp Fy1 . SO Vpig = Yipq . Since
VrikVr1 € E(AER(H)) , Vpp # Urtj* and Vrpl # Upyj - Since e(Vryp) =M -1,
Ady(VrikoVry) =M —1 and e(vy) =M . This implies that dy(Vyy, vpyje) =
Ay (Vr41 Vrar) + dH(Ur+k'vr+j*) =M and VrpiVryjr € E(AER(H)) : Hence
Vpy jVrskVr41Vr+j*Uryj 1S @ cycle Cy in AER(H), a contradiction. Suppose e(v,,;) = M —
1. Then e(v,4,) =M. So v,,, Is adjacent to at least one vertex v,,,+ € T; whose
eccentricity is M. Let P3: v, V1V 2... V' m_1Vrsx+ be a shortest path between v, ., and
Vrys N H of length M. Since v, V1 ; € E(AER(H)), Vpyj # Vpyper aNd vy ; #y'1. SO
Vpyj=Y'm-1. Since e(vy4j) =M =1, dy(Vyyj,vrs) =M —1 and e(v,y;) = M. This
implies that dH(vr+i: vr+k*) = dH(vr+i' vr+j) + dH(vr+j' vr+k*) =M and Vr+iVrk €
E(AEr(H)). HENCE Vy i Vr ik VrsiVrsjVrsk IS ACYCle Cy in AER(H), a contradiction.

Case 2. If either e(v,,x) + e(v,4;) iseven orodd, then as in Case 1, AEx(H) is not equal to
G.

Case 3. Suppose e(vy.;) + e(vy4;) isevenorodd. If v,,; isnota pendant vertex, then as in
Case 1, AEr(H) isnot equal to G. Suppose v,,; is a pendant vertex.

Case 3.1 If e(vy4;) + e(vy;) isevenand |“2CD) — i if e(,.,;) # e(v.), then
Ay (Vrii Vrsj) <M. SO e(Vry;) = M = e(vyyj). Let Py:vyy;2127,... 21V DE @ shortest
path between v,,; and v,,; in H of length M. Then dy(vy42Zm-1) =M —1 and

e(Zm-1) =M —1. Hence v,,;z,_1 € E(AEz(H)), a contradiction to the fact v,,; is a
pendant vertex.
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Case 3.2. If (V1) + e(vyy)) is odd and |<2 XD — by — 1 then the eccentricity of
any one of v,,;, v, is M —1. Let e(v,4;) =M — 1. Then dy(vyy;,vryj) =M — 1 and
e(vy4;) = M. So v, ; is adjacent to at least one vertex v, ;- € T; whose eccentricity is M.
Since Py: vy jY1Y2-.. Ym-1Vr+j* IS @ shortest path between v,,; and v, ;- in H of length
M and vy, vk € E(AER(H)), Vrig # Vpyjr AN Vpyy #y1. SO Vppp = Y-y . Since
VrikVrl1 € E(AEF(H)) v Urp F Urtj* and Vryr # Ur+j - Since e(vr+k) =M-1,
dy(VrsioVre) =M —1 and  e(vyy) =M . This implies that dy(vey, vpejr) =
Ay (Vr1 Vrsk) + dH(Ur+k'vr+j*) =M and VrtiVryj- € E(AEF(H))- Hence Ur+jVr+kVr+i
Vyyj*Uryj IS acycle C, in AEp(H), a contradiction. Suppose e(v,,;) = M. Since v,,; is a
pendant vertex, e(v,,;) = M, a contradiction to e(v,,;) =M — 1.

Case 4. Suppose e(v,4;) + e(v,4m) IS even or odd. If v,,,, is not a pendant vertex, then as
in Case 1, AE(H), is not equal to G. Suppose v,,,, is a pendant vertex. Then as in Case 3.1

and 3.2, AEr(H) is not equal to G. Thus G is not a F -average eccentric graph.
O

Proposition 2.17. Let ¢ =rK; UL, U G, U G, U...U G, be a disconnected such that r > 1,
a ladder L, as a component with t > 2 steps, each G; is a square free component and non
isomorphic to P, for 1<i<p and |V(G;)|=r; for i =1,2,...,p. Then G is not a F-
average eccentric graph.

Proof. Let vy, v,,..., v, betheisolated vertices of G, Vyy1, Vyyo,eves Vpgts Wyg1yooor Wryr DE
the vertices of the ladder L, and v,y ¢y, 41, Vrgear,  +2,-+ - Vrsesr; DE the vertices of the
component G;, 1<i<p where r,=0. Suppose there exists a graph H such that
AEp(H) =G . If H is disconnected, then each component of AEr(H) is complete, a
contradiction to G € F,,. So H is connected. By the definition, each of vy, v,,..., v, has no
F- average eccentric vertices in H. If H has a full degree vertex, then by Theorem A, AEr(H)
has a full degree vertex, a contradiction. So r(H) = 2. Since v,,; and v,,;,, are adjacent in

AEg(H), there is a shortest path between v,,; and v,,;,, in H of length [e(v”i)Jre(U”"*l)J.

2
If t =2,then L, = C, and by Theorem A, the result follows. So t > 3.

Case 1. e(vy4;) + e(v,4i+1) iseven or odd.

Case 1.1 e(Vry;) + e(Vryisy) is even and ZCTECriet) =y f o(p,,) # e(Vyyi4a),

then dy(Vrii, Vrvivr) <M. SO e(Vry) =M = e(Uryi41). Lot PrivpyiXaXo . X1 Vr i
be a shortest path between v,.; and v,,;,; in H of length M. Since v, ;4 1Wyijy1 €
E(AEr(H)), Wryit1 # Vpy; @Nd Wypipq # Xmpo1. S0 Wypipq = X1 and e(Wyyi4q) = M — 1.
Since VpypiWrti € E(AEF(H)) v Wryi F Upgiv1 and Wyt F X1 - So Wrti = Xm=-1 and
e(Wyy;) =M —1 . This implies that dy(Wyi;,Wryizq) = dg(tm_1, %) <M -1 and
Wy iWrriv1 € E(AER(H)), a contradiction.

Case 1.2. If e(v,4;) + e(Vy4+141) is 0dd and [e(vr”)f(v”"“)J = M — 1, then the eccentricity

ofanyoneof v, ;,Vyyip1 IS M — 1. Let e(Vyyjy1) =M — 1. Then dy(Vyyi, Vpgiv1) = M —
1 and e(v,4;) = M. Since v,,; isadjacentto v,,;_1,w,,; and v,,;,, only, the eccentricity
of any one of v._q,w,y IS M . Suppose e(Vyyi-1) =M . Let
Py ;X1 X0, .. XiX j41.-- X' m_1Vr4+i—1 D€ a shortest path between v,,; and v,,;_, in H of
length M. Since v, ;W,,; € E(AEp(H)), Wyyi # Vpyi—q aNd Wiy # Xq. SO Wyp; = X' 11
and e(Wy4;) =M —1. Since vy 1Wryiq € E(AER(H)), Wryio1 # Upyy aNd Wiy g #
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X'm-1. SO Wyyi—1 =x; and e(W,,;—1) =M — 1. This implies that dy(Wy,i—q, Wyyi) =
dy(x, x'm-1) <M —1 and w,,;_1w,; € E(AEr(H)), a contradiction. Suppose e(w,,;) =
M. Let P3:vpy X1 X5, .. XX j4q... X" "y Wyy; DE a shortest path between v,..; and w;y.,; in
H of length M. Since v, ;Vpyiz1 € E(AER(H)), Vpyiz1 # Weyi and vppip1 #x1. SO
Vrpitr = X o1 aNd e(Wryi41) = M — 1. Since wyy;Wryiy1 € E(AEF(H)), Wryig1 # Vryy
and Wyyjpq #X ' me1 . SO Wpyip1 =%, and e(Wyyi41) =M —1 . This implies that
dyWriis1 Vryivr) = Au(xy, X ' m-1) <M-1 and Wpii41Vr4i41 € E(AER(H)) @
contradiction. If i =1, then v, is adjacent to w,,,; and v,,, only and e(w,,,) = M.
Since v, 1Vy4, € E(AER(H)), by the path P;, v, # W,y and v,y # x1. SO Vpyy =
X" -1 and e(vy42) =M — 1. Since Wy Wyiy € E(AER(H)), Wyyg # Vpyq and wy,, #
X' m-1. SO Wy, =x; and e(w,,,) =M —1. This implies that dy(Wyyq, Vyys) =
dy(xy, x"m—1) <M —1 and w,,,v,,, € E(AEz(H)), a contradiction.

Case 2. If either e(w,,;) + e(W,,;41) iSeven or odd, then as in Case 1, AEz(H) # G.

Case 3. Suppose e(v,4;) + e(w,,;) iseven or odd.

Case 3.1. If e(vVrys) + e(Wyyy) is even and SErXeWrd — a1 if o(y ) # e(w,y,), then
dy(Vrsi, Wre)) <M . SO e(Vry)) =M =e(Wpyy) . Let Ppivry V1Yo, Ym-1Wrsi b€ @
shortest path between v,,; and w,,; in H of length M. Since v, ,;v,,i+1 € E(AEr(H)),
Vrpit:1 F Wrpp aNd Vpyipq Y1 0 SO Vpyipg = Y1 and e(Vpy44) =M —1 . Since
Wr+iWrtiv1 € E(AER(H)) , Wrpip1 # Vpyy @A Wiyiyq # Yineq - SO Wygyp = y1 and
e(Wryi+1) =M — 1. This implies that dy(Vryir1, Wreir1) = dg(V1, Ym-1) <M —1 and
VyyiviWraiv1 € E(AER(H)), a contradiction. If i = ¢, then v,,, is adjacent to v,,,_; and
W4t Only and e(w,.4t) = M. Since vy i_1Vr4: € E(AER(H)), by the path Py, v, -1 # V1
and Vpyeo1 F Wrpi. SO Vpypo1 =Yg aNd e(Vpyp-1) =M — 1. Since Wy Wiy €
E(AEp(H)), Wrir—1 # Ym-1 aNd Wyyp g # Vpyp. SO Wypp g =y1 and e(Wpyrq) =M —
1 . This implies  that dyWrii—1, Vrgt—1) = dg(V1, Vm—1) <M — 1 and
Vyyt—1Wrrt—1 & E(AER(H)),a contradiction

Case 3.2. If e(v,4;) + e(w,,;) is odd and l%] = M — 1, then the eccentricity of
any one of v,,;,w,y; IS M —1. Let e(w,;) =M — 1. Then dy(Vyy;,Wyy;)) = M — 1 and
e(v,4+i) = M. Since v,,; isadjacentto v,,;,_1,w,4; and v,,;,1 only, the eccentricity of any
one of Vyyio1 Urtitl is M .Suppose e(Vpypi—1) =M : Let
Ps:Vpyi¥1Y2--- VY j41--- Y m—1Vr+i—1 D€ @ shortest path between v,.,; and v,,;_; in H of
length M. Since v,,;_1Wyii—1 € E(AER(H)), Wyyij—1 # Vpyy; and wyyj_ 1 # ¥’ 1. SO
Wrii-1 =Y and e(Wpy;1) =M — 1. Since v,y Wyy; € E(AER(H)), Wryy # Vryi—q and
Wyt V1. SO Wy = ¥ -1 and e(w,.4;) = M — 1. This implies that dy(Wyyi—1, Wryi) =
dy(V, V' m—1) <M—-1 and w,,;_,w,,; 2 E(AEz(H)) , a contradiction. Suppose
e(Vy4iy1) = M. Then by case 1.1, w,,;_w,,; € E(AEr(H)), a contradiction. Suppose
e(vy4i) =M —1. Then e(w,,;) = M. Since w,,; is adjacent t0 w,,;_1, Vpry; aNd Wy it
only, the eccentricity of any one of w,,;_1,W,y;+1 IS M. Suppose e(w,,;_1) = M. Let
Pe:wypiy'1y"' 5.V m_1wryi—1 beashortest path between w,.,; and w,.,;_, in H of length
M. Since Wrii-1Vryi-1 € E(AEF(H))1 Vrii-1 # Wryg and Vryi-1 # y”m—l- So Urti-1 =
y”1 and e(vr+i—1) =M —1. Since WrtiVrii € E(AEF(H))a Vrgi F Wryi1 and Vryi #
y'i. S0 vy =y"'mo1 and e(v,y;) =M —1. This implies that dy(vy1i—1,Vrsi) =
dy(v'1, 9" ' m-1) <M —1 and hence v,,;_,V,4; € E(AEr(H)) a contradiction. Suppose
eWpyiz1) =M . By case 11, v, v4;41 €E(AE(H)) , a contradiction.
O
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