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Abstract: Increasing the revenue and profitability is the top most priority of a business. 

One of the major factors affecting the profit of a business is Customer Churn. Early 

prediction of customer churn and customer retention plays a vital issue in Customer 

relationship management. Retaining a customer is cost effective than attracting a new 

customer. This paper demonstrates a frame work for predicting customer churn in banking 

industry using the transactional data.  It also compares with various other models. It uses 

the Behavioral aspects of the customer through the transactions made by them. It has been 

implemented through attention based Hybrid GRU BiLSTM model.  
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1. INTRODUCTION 

 

Customer churn is a critical issue faced by almost every industry. Retail banking also suffers 

from customer churn. Around 2 % to 10% of customers leave the bank without any prior 

communication. It reflects in profit of an organization. Since customer retention is 

comparatively less expensive than acquiring new customers to any business. Therefore, 

accurate and early prediction of customer churn is critical in minimizing the cost of a bank’s 

overall retention marketing strategy. 

 

The deep Learning models performs better in prediction mechanism. Some techniques like 

LSTM which does not suffer from vanishing gradient problem are used for time series data 

prediction(Venkatesh and Jeyakarthic, 2020). The BiLSTM Technique allows the network to 

handle the sequence time step information in both forward and backward direction. In spite of 

that mechanism it needs attention for performing better churn prediction. It is achieved by 

attention layers based on the recent activity trends from RFM features. 

 

Customers’ behavioral patterns from their transactions can predict better results than using 

the demographic values of a customer(Kaya et al., 2018). Instead of using customers 

transaction details which are time series data to cluster the individuals, these values are 

created as features and are passed to the model. For each customer Recency, frequency, and 

monetary features are extracted and allow the model to learn and identify the patterns.  
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Here, this framework follows data cleaning and reduction, Feature extraction, Handling 

imbalanced dataset, and classification. 

 

2. RELATED WORKS 

 

The experiments  showed that neural networks typically outperform logistic regression and 

decision trees in churn prediction.(Belém, 2018). For Bank customer churn prediction it is 

necessary to handle transaction of the customer. It is time series based sequence data(hegde 

and Mundada, 2019). It needs methods enhanced methods for data reduction since millions of 

records involved in transaction.  

 

A Hybrid classification approach was implemented through RNN and LSTM for churn 

prediction. Data reduction and data imbalance was not better focused in this model. Effective 

preprocessing would fetch better recall value for the imbalanced dataset(Simion-

Constantinescu et al., 2018) 

 

High level of irrelevant data in any dataset will surely affect the classifiers that would 

result in bad or wrong prediction. It might also consume more computational time and 

storage space. It was tested on different datasets and results shows that in many cases noise 

removal improves classification performance (Ougiaroglou and Evangelidis, 2016). 

A Dynamic Classification for optimize customer churn prediction was implemented with 

under sampling and SMOTE to handle imbalance dataset. But time series based sequence 

prediction algorithm would fetch better results (Leung and Chung, 2020).  

 

Deep and shallow model for Insurance churn prediction was implemented using generalized 

linear model for shallow part and feed forward neural network for deep model. It has used 

demographic data alone. Time series data was ignore. Implementing with time series 

prediction could be focused for better results (Zhang et al., 2017).  

 

A hybrid BiGRU and BiLSTM model was developed to handle time series data. A sigmoid 

function was used for final classification. It handles high dimensional time sequence data and 

BiGRU was used for its fast and easier computation (Munawar et al., 2021). 

 

The conventional method utilizing an LSTM-AE was employed sequence Auto encoder for 

time series data set. It had used LSTM cells for execution of the encoder and decoder for 

learning temporal dependencies from one sequence to another from electricity consumption 

data set. It was developed for predicting electricity consumption.(Khan et al., 2020) 

 

3. DATA SET DESCRIPTION 

 

The Czech Financial dataset has 4500 Customer data over 14 topics such as account balance, 

credit card information, demographic data, Full date and time of transaction and so on. It is 

dated from January 2015 to December 2018 around 1 million transactions. 

 

Unlike other Datasets, the target variable is not present and so it is computed based on time-

stamp differences. Customers with last three month of inactivity or with no balance amount 

are labeled as churned. The transactional data such as ATM transactions, withdrawal, deposit, 

internet transactions, Time are present in the dataset. The behavioral features are extracted 
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from the dataset for last one year of transactions from that dataset for calculating recent 

month trend from each bin.  

 

 

4. PROPOSED SYSTEM MODEL  

 

The proposed solution for Bank Customer Churn Prediction typically consists of 5 main 

steps.  

• In step (1), the data is preprocessed; missing values and outliers are filled and removed, 

respectively. Usually, missing values and irrelevant values degrade the model’s performance 

due to ambiguous data. Here the credit transactions are taken into account for extracting 

customers’ behavioral pattern. The debit transactions are ignored. Data reduction is done 

through reduction through exclusively homogeneous clustering(John Britto and Gobinath, 

2020). It is a down sampling technique for imbalance dataset. It reduces exclusively the 

majority class that is non churn data.  

• In step (2), the cleaned and reduced data is then passed to the next step in which SMOTE 

technique is implemented to handle the imbalance dataset. In real world, Churned customers’ 

samples are rare. Training of the model on such imbalanced dataset leads to biasness towards 

a majority class; therefore, data balancing is a necessary requirement. 

 

In step (3), based on the time series data the behavioral features are computed from the 

customer’s transaction dataset. 

 

•In step (4), the stratified available data is then passed to the next phase for classification 

purpose. 

 

• In step (5), a hybrid Attention based GRU and bi-directional LSTM model is developed and 

time series data is passed.  

 

The following figure 1 depicts the proposed framework 
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Figure 1 Proposed Bank Customer Churn Prediction Model 

 

4.1 Data Preprocessing 

Data preprocessing technique is used to transform the raw data into usable format. It involves 

data cleaning and data reduction. Here Reduction through exclusively homogeneous 

clustering technique is implemented(John Britto and Gobinath, 2020). REHC executes k-

means clustering using initial means and builds n clusters. It repeats the routine exclusively 

for majority homogeneous clusters until not churned customer data are clustered.  

The following tables 1 and 2 depicts the data set before and after reduction 

respectively 

 

Table 1 Before REHC reduction 
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Table 2 Data set after reduction using REHC 
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4.2 Balancing Dataset using SMOTE 

The balanced dataset is essential to train ML and deep learning models to prevent biasness 

towards majority class, which leads to misclassification. Here, we implemented SMOTE 

technique to handle imbalance data which synthesis the data samples and oversamples the 

minority class. SMOTE has proved successful in variety of applications(Fernández et al., 

2018). The following figure depicts the data imbalance. 

 
 

Figure 2 Distribution of Churned and not churned customers 

 

4.3 Time series based Features 

The three key features used to define and analyze the customer behavior through their 

transactions are Recency, frequency, and monetary value (RFM). Recency is the time interval 

since the last transaction made; frequency is the number of transactions made in a specified 

time window and monetary is the amount spent during a specified time. These sequence 

based time series data are computed quarter wise (3 months) for prediction. 

 

4.4  Hybrid Attention based GRU and bi-directional LSTM  

The Hybrid Attention based GRU BiLSTM is proposed for early banking churn  prediction. 

Recent activity trend for each bin is used to attain new weights in attention layer. The 

behavioral features extracted from the transaction dataset have been given as input. 

Influencing recent activity among RFM activity is calculated from each bin separately. The 

Hybrid Attention based GRU BiLSTM  is depicted in figure 3 

 

The attention weights are transferred into the network at right part and produce a 

corresponding loss value based on the predicted error(Li et al., 2019). The churning customer 
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of a bank is not seasonal or periodic. It needs special attention based on recent activity trends 

of a customer. The recent month activity trend from each bin is computed and is given as 

attention weight. 

 
 

Figure 3 Hybrid attention based GRU BiLSTM 

 

5. PERFORMANCE EVALUATION 

 

The performance of the Hybrid attention based GRU BiLSTM model is evaluated using 

Precision, Recall, F1-score and PR – AUC. 

 

5.1 Precision and Recall 
 Precision is the evaluation metric preferably used in the case of imbalanced data. Precision 

measures what proportion of positive class predictions are actually positive and is calculated 

as: 

 

Precision = TP / (TP+FP) 

 

Recall is known as the true positive rate (TPR, also called sensitivity), and it represents the 

proportion of the actual positive class which is predicted correctly. Recall is calculated as: 

Recall = TP / (TP+FN) 

 

5.2 F1- Score and PR-AUC 

 F1-score gives the weighted average value of both recall and precision. 

 

F1−score = 2×(Precision×Recall) /  (Precision+Recall) 
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Table 1 reveals the evaluation results. 

 

 

 

Table 3 Evaluation results 
 

  Precision Recall F1-Score PR-AUC 

RNN 98.29 90.87 17.02 13.69 

LSTM 78.16 97.34 12.27 37.58 

BiLSTM 84.32 95.56 14.4 34.11 

Attention based 

GRU BILSTM 
83.74 99.08 13.21 23.21 

 

Area under Precision - Recall Curve: AU ROC is used in the case of imbalanced data set 

where positive class (like churn in our case) is rare, an alternative measure, which is the 

precision recall curve is used. Figure 3 shows the area under ROC curve. 

 

 
 

Figure 4  Area under the ROC Curve 
 

6. CONCLUSION 

 

In this paper, improved churn prediction model for banking industry is proposed and 

compared with various deep learning models. It takes time series customer transaction dataset 

for prediction. Down sampling and up sampling has been applied for raw data set using 

REHC and SMOTE respectively. Behavioral features has been computed and fed as input for 
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the hybrid GRU BILSTM model. An Attention has computed and given to the model based 

on recent activity for each bin. Since, it is imbalanced data set the recall value is used for 

evaluation metrics.  It predicts the churning customers (True Negative) and thus recall value 

is used. It predicts true negative (churning customers) with recall value of  99.08. Thus, a 

improved model for bank customer churn has been proposed and evaluation results shows 

better performance when compared with other deep learning models.   
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