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Abstract — In this paper, a single grade marketing organization is considered in which 

exits of personnel occur in clusters at random epochs. A suitable univariate recruitment 

policy based on cumulative damage process and shock model approach in reliability theory 

is used. Analytical result for variance of time to recruitment and expected total number of 

exits up to time to recruitment are obtained when (i) the number of clusters of exits forms a 

homogeneous Poisson process (ii) number of exits in each cluster forms a sequence of 

independent and identically distributed geometric random variables and (iii) the mandatory 

breakdown threshold is a positive integer valued random variable. The influence of nodal 

parameters on the performance measures is studied and relevant conclusions are 

presented. 
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1. INTRODUCTION 

 

In [2] and [3], the author, a pioneer in the study of manpower planning, has used 

appropriate statistical techniques and studied renewal theoretical models in manpower 

planning. Many researchers have studied the problem of time to recruitment for a single 

grade marketing organization, where exits occur as the effect of policy decisions such as 

revision of pay, targets etc. taken by this organization, by considering different assumptions 

on loss of manpower      [[6], [11]], mandatory threshold for loss of manpower [[8], [13]] and 

inter-policy decision times [[5], [7]] using univariate policy of recruitment. In [12] the 
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authors have obtained long run average cost for single grade marketing organization by 

assuming the threshold as a constant and survival time process as a geometric process using 

univariate policy of recruitment. In the above cited work involving policy decisions, separate 

epochs for policy decisions and exits are not considered, in spite of the fact that such separate 

epochs are more realistic. In this context,       the author in [4] has studied the problem of time 

to recruitment for a single grade manpower system with different epochs for decisions and 

exits when the system has a mandatory breakdown threshold using a method different from 

the conventional method which uses Laplace transform. In [10] the author has studied the 

work in [4] when the system has optional and mandatory breakdown thresholds for different 

wastages. In [1] the author has obtained the variance of time to recruitment for a single grade 

manpower system, where depletion of manpower occurs due to (i) voluntary and involuntary 

exits of personnel from the organization and (ii) breaks taken by personnel working in the 

organization, under different assumptions on inter-exit times and inter-breaking decision 

times using univariate policy of recruitment. Recently, in [9] the authors have studied the 

problem of time to recruitment for a three graded marketing organization by considering two 

different cluster processes due to exits and transfers with new extended threshold for loss of 

manpower. In the present paper, the problem of time to recruitment for a single grade 

marketing organization in which exits of personnel occur in clusters at random epochs is 

discussed. A stochastic model is constructed with suitable assumptions on the cluster process, 

number of exits in any cluster and the mandatory breakdown threshold. A univariate 

recruitment policy is used and variance of time to recruitment, average number of clusters of 

exits up to time to recruitment and the total number of exits up to time to recruitment are 

determined for the present model. A numerical illustration with findings and conclusion are 

presented for a better understanding. 

 

2. MODEL DESCRIPTION AND ANALYSIS 
 

Consider a marketing organization consisting of one grade (referred as a system) in 

which clusters of exits of personnel takes place at random epochs in (0, ∞). Let 𝐵(𝑡) be the 

number of clusters of exits in (0 𝑡].  It is assumed that {𝐵(𝑡);  𝑡 ≥ 0} is a Poisson process 

with rate 𝑏, 𝑏 > 0. Let 𝑋𝑖 be the number of exits in the 𝑖𝑡ℎ cluster, 𝑖 = 1,2,3, … . It is assumed 

that  

1
 

iiX form a sequence of independent random variables following decaptivated 

geometric distribution with parameter 𝑝, 0 < 𝑝 < 1.  

 

Let 𝐶(𝑡) be the total number of exits in 𝐵(𝑡) clusters in (0 𝑡]. Note that 𝐶(𝑡) =

∑ 𝑋𝑖
𝐵(𝑡)
𝑖=1 . Let Y be a positive integer valued random variable representing the mandatory 

random breakdown threshold level for the cumulative number of exits in the system with 

mean 𝐸(𝑌) and variance 𝑉(𝑌). It is assumed that Y is independent of 𝐵(𝑡),  for all 𝑡 ≥ 0  and 

𝑋𝑖, 𝑖 = 1,2,3, …. The univariate recruitment policy states that recruitment is done when the 

total number of exits exceeds the mandatory breakdown threshold. Let T be the random 

variable denoting the time to recruitment with mean 𝐸(𝑇) and variance 𝑉(𝑇).  

 

3. MAIN RESULT 
 

       From the recruitment policy, the tail distribution of time to recruitment is given by 

                                                  𝑃[𝑇 > 𝑡] = 𝑃[𝐶(𝑡) ≤ 𝑌].      (1) 
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       Conditioning upon the event [Y=m] and noting that C(t) and Y are independent, we get 

                 𝑃[𝑇 > 𝑡] = ∑ 𝑃[𝑌 = 𝑚]{𝑃[𝐶(𝑡) = 0] + ∑ 𝑃[𝐶(𝑡) = 𝑛)]𝑚
𝑛=1 }∞

𝑚=1         (2) 

      Since 𝐶(𝑡) is a randomly indexed partial sum indexed by the Poisson process {𝐵(𝑡);  𝑡 ≥
0}  
with independent and identically distributed decaptivated geometric random variables as 

summands, we note that  

𝑃[𝐶(𝑡) = 0] = 𝑒−𝑏𝑡 
and 

                   𝑃[𝐶(𝑡) = 𝑛] = 𝑒−𝑏𝑡 ∑
1

𝑟!

𝑛
𝑟=1 (

𝑛 − 1
𝑟 − 1

) (𝑏𝑡𝑝)𝑟(1 − 𝑝)𝑛−𝑟 , 𝑛 = 1,2,3, …    (3) 

From (2) and (3), it can be shown that  

        𝑃[𝑇 > 𝑡] = 𝑒−𝑏𝑡 + ∑ 𝑃[𝑌 = 𝑚]∞
𝑚=1 ∑ (1 − 𝑝)𝑛𝑚

𝑛=1 ∑
1

𝑟!

𝑛
𝑟=1 (

𝑛 − 1
𝑟 − 1

) (
𝑏𝑝

1−𝑝
)

𝑟

𝑡𝑟𝑒−𝑏𝑡.  (4) 

 

 We now determine 𝐸(𝑇) and 𝑉(𝑇) from (4). 

We know that 

                                     𝐸(𝑇𝑟) = 𝑟 ∫ 𝑡𝑟−1∞

0
𝑃[𝑇 > 𝑡]𝑑𝑡, 𝑟 = 1,2,3, …              (5) 

From (4), (5) and taking 𝑟 − 1 = 𝑙, it can be shown that  

𝐸(𝑇) =
1

𝑏
+

1

𝑏
∑ 𝑃[𝑌 = 𝑚]∞

𝑚=1 ∑ (1 − 𝑝)𝑛𝑚
𝑛=1 (

𝑝

1−𝑝
) ∑ (

𝑛 − 1
𝑙

) (
𝑝

1−𝑝
)

𝑙
𝑛−1
𝑙=0 . 

                  =
1

𝑏
+

1

𝑏
∑ 𝑃[𝑌 = 𝑚]∞

𝑚=1 ∑ (1 − 𝑝)𝑛𝑚
𝑛=1 (

𝑝

1−𝑝
) (1 +

𝑝

1−𝑝
)

𝑛−1

. 

                                         𝐸(𝑇) =
1

𝑏
+

𝑝

𝑏
∑ 𝑚 𝑃[𝑌 = 𝑚]∞

𝑚=1  

                                    i.e 𝐸(𝑇) =
1

𝑏
{1 + 𝑝𝐸[𝑌]}.                (6) 

 

 

 

We next determine 𝐸(𝑇2). 

From (4) and (5), it can be shown that   

       𝐸(𝑇2) =
2

𝑏2
+

2

𝑏2
∑ 𝑃[𝑌 = 𝑚]∞

𝑚=1 ∑ (1 − 𝑝)𝑛𝑚
𝑛=1 ∑ (𝑟 + 1)𝑛

𝑟=1 (
𝑛 − 1
𝑟 − 1

) (
𝑝

1−𝑝
)

𝑟

.         (7) 

Consider  ∑ (𝑟 + 1)𝑛
𝑟=1 (

𝑛 − 1
𝑟 − 1

) (
𝑝

1−𝑝
)

𝑟

. 

Since  (𝑟 + 1) = (𝑟 − 1) + 2 and  (
𝑛
𝑟

) =
𝑛

𝑟
(

𝑛 − 1
𝑟 − 1

) , we get  

∑ (𝑟 + 1)𝑛
𝑟=1 (

𝑛 − 1
𝑟 − 1

) (
𝑝

1−𝑝
)

𝑟

= ∑ (𝑛 − 1)𝑛
𝑟=1 (

𝑛 − 2
𝑟 − 2

) (
𝑝

1−𝑝
)

𝑟

+

2 (
𝑝

1−𝑝
) ∑ (

𝑛 − 1
𝑟 − 1

) (
𝑝

1−𝑝
)

𝑟−1

.𝑛
𝑟=1      

                     (8) 

Consider ∑ (𝑛 − 1)𝑛
𝑟=1 (

𝑛 − 2
𝑟 − 2

) (
𝑝

1−𝑝
)

𝑟

. 

Taking  𝑟 − 2 = 𝑗, it can be shown that  

∑(𝑛 − 1)

𝑛

𝑟=1

(
𝑛 − 2
𝑟 − 2

) (
𝑝

1 − 𝑝
)

𝑟

= (𝑛 − 1) (
𝑝

1 − 𝑝
)

2

∑ (
𝑛 − 2

𝑗
) (

𝑝

1 − 𝑝
)

𝑗
𝑛−2

𝑗=0

 

                      i.e ∑ (𝑛 − 1)𝑛
𝑟=1 (

𝑛 − 2
𝑟 − 2

) (
𝑝

1−𝑝
)

𝑟

=
(𝑛−1)𝑝2

(1−𝑝)𝑛 .                        (9) 
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Since  ∑ (
𝑛 − 1
𝑟 − 1

) (
𝑝

1−𝑝
)

𝑟−1

= [1 +
𝑝

1−𝑝
]

𝑛−1
𝑛
𝑟=1 ,  

                                 2 (
𝑝

1−𝑝
) ∑ (

𝑛 − 1
𝑟 − 1

) (
𝑝

1−𝑝
)

𝑟−1

=
2𝑝

(1−𝑝)𝑛 .𝑛
𝑟=1                                (10) 

From (8), (9) and (10), we get 

∑ (𝑟 + 1)𝑛
𝑟=1 (

𝑛 − 1
𝑟 − 1

) (
𝑝

1−𝑝
)

𝑟

=
(𝑛−1)𝑝2+2𝑝

(1−𝑝)𝑛
.              (11) 

From (7), (11) and on simplification, we get 

            𝐸(𝑇2) =
2

𝑏2 +
𝑝2

𝑏2
∑ (𝑚 − 1)𝑚 𝑃[𝑌 = 𝑚] +

4𝑝

𝑏2
∑ 𝑚 𝑃[𝑌 = 𝑚]∞

𝑚=1
∞
𝑚=1  

                   i.e 𝐸(𝑇2) =
1

𝑏2
{2 + 𝑝2[𝐸(𝑌2) − 𝐸(𝑌)] + 4𝑝𝐸(𝑌)}.             (12) 

 

 

We now find 𝑉(𝑇).  

From (6) and (12), it can be shown that  

                               𝑉(𝑇) =
1

𝑏2
+

𝑝2

𝑏2
{𝐸(𝑌2) − [𝐸(𝑌)]2} + + {

2𝑝−𝑝2

𝑏2
} 𝐸(𝑌) 

                           i.e 𝑉(𝑇) =
1

𝑏2
{1 + 𝑝2𝑉(𝑌) + 𝑝(2 − 𝑝)𝐸(𝑌)}.          (13) 

Equations (6) and (13) give the mean and variance of time to recruitment for the present 

model. 

We next determine 𝐸[𝐶(𝑇)], expected total number of exits up to time to recruitment. 

By Wald’s Equation, expected total number of exits up to time to recruitment is given by  

                                           𝐸[𝐶(𝑇)] = 𝐸(𝑋)𝐸[𝐵(𝑇)].           (14) 

where 𝐸(𝑋) =
1

𝑝
  is the common mean of decaptivated geometric random variables                    

𝑋𝑖 ,  𝑖 = 1, 2, 3, …. 

Since {𝐵(𝑡);  𝑡 ≥ 0} is a Poisson process with rate 𝑏, we know that 𝐸[𝐵(𝑡)] = 𝑏𝑡. 
By conditioning upon T and using law of total probability we find that   

                                             𝐸[𝐵(𝑇)] = 𝑏 𝐸[𝑇].                       (15) 

From (6), (14) and (15), we get 

                                          𝐸[𝐶(𝑇)] =
1

𝑝
+ 𝐸[𝑌].            (16) 

Remark: 

When the mandatory breakdown threshold Y is a constant threshold, analogous results 

for the mean and variance of time to recruitment can be obtained. 

In fact, if 𝑌 = 𝑐, 𝑐 > 0, it can be shown that  

𝑃[𝑇 > 𝑡] = 𝑒−𝑏𝑡 + ∑ (1 − 𝑝)𝑚𝑐
𝑚=1 ∑

1

𝑟!

𝑚
𝑟=1 (

𝑚 − 1
𝑟 − 1

) (
𝑏𝑝

1−𝑝
)

𝑟

𝑡𝑟𝑒−𝑏𝑡. 

𝐸(𝑇) =
1

𝑏
{1 + 𝑝𝑐}. 

𝐸(𝑇2) =
1

𝑏2
{2 + 4𝑝𝑐 + 𝑐(𝑐 − 1)𝑝2}. 

and 

𝑉(𝑇) =
1

𝑏2
{1 + 2𝑝𝑐 − 𝑝2𝑐}. 
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4. NUMERICAL  ILLUSTRATION  AND  FINDING 

 

‘p’ and ‘b’ are the nodal parameters in the performance measures 𝐸(𝑇) and 𝑉(𝑇). ‘p’ 

is the only nodal parameter in the performance measure 𝐸[𝐶(𝑇)]. It is palpable that 𝐸(𝑇) and 

𝑉(𝑇) increase with ‘p’, keeping ‘b’, 𝐸(𝑌) and 𝑉(𝑌) fixed. But 𝐸[𝐶(𝑇)] decreases when p 

increases, keeping 𝐸(𝑌) fixed. These are also true logically. In fact, if ‘p’ increases, then 1/p, 

the average number of exits in each cluster decreases, which implies, the average time taken 

for exceeding the threshold level increases, but the average total number of exits  decreases.  

It is also clear that 𝐸(𝑇) and 𝑉(𝑇) decrease when ‘b’ increases, keeping ‘p’, 𝐸(𝑌) and 

𝑉(𝑌) fixed.  In fact, if  ‘b’, the average number of clusters per unit time increases, then the 

average time taken for exceeding the threshold level decreases and hence the mean time to 

recruitment decreases. 

The following table gives the effect of simultaneous variation of ‘p’ and ‘b’ on the 

performance measures 𝐸(𝑇) and 𝑉(𝑇) when 𝐸(𝑌) = 150 and 𝑉(𝑌) = 250. 

                                                                               Tab. 1 

 

Since 𝐸[𝐶(𝑇)] is independent of ‘b’, the following table gives effect of variation of 

‘p’ on the performance measure 𝐸[𝐶(𝑇)] when 𝐸(𝑌) = 150. 

Tab. 2 

FINDING: 

Tables (1) and (2) reflect the logical conclusions on the monotonicity of 𝐸(𝑇), 𝑉(𝑇) 

and 𝐸[𝐶(𝑇)] when the respective nodal parameters increase.  

 

5. CONCLUSION 

 

The present work contributes to the existing literature in the sense that the model 

discussed in this paper is new in the context of considering (i) the number of clusters of exits 

forms a homogeneous Poisson process (ii) the number of exits in each cluster forms a 

sequence of independent and identically distributed geometric random variables and (iii) the 

mandatory random breakdown threshold as a positive integer valued random variable.  
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