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ABSTRACT: This paper focusses on production inventory model for deteriorating 

products with dependent selling price to balance the demand and shortage under 
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expressed as ranking fuzzy numbers with best approximation interval. To derive the 

optimal decisions, the technique of Geometric programming is made relevant by solving a 
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1. INTRODUCTION: 

 

          Business investment can affect the economy’s short term and long term growth. A 

business cycle expansion generates higher interest rate and a surplus of capital that prompts a 

decrease in investment and a business – cycle contractor. A business can reach a high 

pinnacle if and only if the inflation rate is greater than the return rate of investment. But in 

reality, with increase in time, inflation becomes a substantial function leading to the cost 

difference. 

          The effects of inflation, time value of money and deterioration of an inventory model 

was investigated by Wee and Law (2001). An inventory model was suggested by Chang 

(2004) for deteriorating products by introducing inflation’s effect. 

          A developed model should focus on the shortages during stock out which should not be 

assumed as backlogged or completely lost. This model allows the shortages and backlogs 

partially the happening shortages. 

          This paper introduces a production inventory model for deteriorating items under 

inflationary environment with allowable shortages. 

          To apply this model, the concept of fuzzy Geometric programming technique is 

adopted. Considering that the coefficients of the problem are fuzzy which are taken in 

geometric form and solved using Geometric programming technique to form a fuzzy 

Geometric programing. 

          This model is constructed under fuzzy goal and fuzzy restrictions on budgetary cost. 

The inventory related costs and other parameters are assumed as fuzzy in nature and a 

numerical problem is solved using Geometric programming technique. 

 

2. MATHEMATICAL MODEL: 

 

   2.1 ASSUMPTIONS: 

1. The model promotes deteriorating products and finite time horizon. 
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2. The demand of the product is dependent on selling price which is given by: 





P
D  

3. Rate of production relies on demand rate. 

4. This model contemplates inflation. 

5. Shortages are permitted and it is partially backlogged. 

 

2.2 NOTATIONS: 

 , - demand parameters 

P - selling price of the product per unit 

k - deterioration parameter 

a - production coefficient, 1a  

C - unit production cost 

1r - inflation rate 

H - respective holding cost 

D - deterioration cost per unit of time 

t - timely production 

1v - hitherto when inventory level becomes zero 

S - shortage cost 

T - time period of the cycle 

L - lost sale cost 

 - backlog rate 

O - ordering cost 

 

3. CRISP MODEL: 

 

          This model is a production inventory model. When 0t , production starts and 

inventory level becomes maximum to satisfy the occurring demand and deterioration. When 

1tt  , production ceases reducing the inventory level by reason of demand and deterioration 

for the period ],[ 1 vt . Finally upto Tt  , shortages occur.  

The unit production cost signifies )1( 1
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Lost sale cost is denoted by )(
)1(

111

1
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Ordering cost is O  

The total cost is given as 
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4. FUZZY MODEL: 

 

                        Here DLSHC ,,,,  are considered to be fuzzy numbers where C  is the unit 

production cost, H  is the holding cost, S  is the shortage cost , D is the deterioration cost per 

unit and L is the lost sale cost. 
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5. NEAREST INTERVAL APPROXIMATION: 

 

          Assume, 
~

A  as a fuzzy number with   cut )](,)([  RL AA  then the interval

])(,)([)(

1
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 dAdAAC RLd  . Let ),,,( 4321
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aaaaA  be a trapezoidal fuzzy number. The 

  cut interval is defined as )](,)([  RL AA  where  )()( 121 aaaAL  and

 )()( 324 aaaAR  . Applying nearest interval approximation, the lower limit of the 

interval 
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6. RANKING FUZZY NUMBERS WITH BEST APPROXIMATION METHOD: 

 

          The ranking of fuzzy numbers with best approximation method can be defined as, “a 

convex combination of lower and upper boundary of the best approximation interval”. If 

]1,0[  is the pre – assigned parameter called as the degree of optimism, then the ranking of 

fuzzy number  
~

A  is defined as  

)()1()()(
~

,  LRf AAAR   

          A bigger value of  satisfies the higher degree of optimism. When )()(,0
~

 LAAR 

expresses that the decision maker’s viewpoint is completely pessimistic. If 

)()(,1
~

 RAAR   then the decision maker’s viewpoint is completely optimistic. For 

)]()([
2

1
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 RL AAAR   the decision maker’s viewpoint is moderately optimistic or 

moderately pessimistic. 
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7. GEOMETRIC PROGRAMMING PROBLEM: 

 

Primal program: 

          Primal Geometric programming problem is  

               Minimize  
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where rkC  and rkb  are real numbers. The above mentioned is a constrained posynomial 

problem in which the number of each term in the constrained function varies. It is denoted by 
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T  for each ,....2,1,0r Let mTTTT .....10   be the total number of terms in the primal 

program then the degree of difficulty is )1(  mT . 

Dual program: 

          Maximize: 
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8. APPLYING GEOMETRIC PROGRAM TECHNIQUE TO SOLVE FUZZY 

INVENTORY MODEL: 

 

          The objective function is  
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           Now using ranking of fuzzy numbers the objective function becomes 
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          Using Geometric programming technique, 
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 subject to the conditions 

1321  rrr   

021  rr   

031  rr   

 

Solving these conditions we obtain  

3

1
321  rrr 

 
 

9. NUMERICAL EXAMPLE: 

 

          The following values are allowed in appropriate units. 

Crisp Model: 

P Rs. 24 / unit; 5.1 ; S Rs. 6 / unit; 06.0r ; 500 units ; d Rs.15 / unit  

50T ; H Rs. 2.0 / unit; 01.0k ; 5.0 ; L Rs.8 / unit; C Rs.12 / unit 

The Total Cost is Rs.32.8825 

Fuzzy Model: 

)18,16,14,12(;)11,9,7,5(;)85.0,06.0,09.0,05.0(;)9,7,5,3(;)18,14,10,6(
~~~~~

 DLHSC

 

when 5.0 we have, 

15)(;8)(;2.0)(;6)(;12)(
~~~~~

 DRLRHRSRCR  

        The Total Cost is Rs.30.6816 

 

10. CONCLUSION: 

 

          This model focusses on deterioration, price sensitive demand, shortages and inflations 

that are realistic features. Here production rate contemplates as demand dependent which 

promotes the real – life situations and shortages during stock out is viewed as partial backlog. 

These realistic features are engulfed as a totality in this model. To enumerate the optimal 

value of production period and shortage period a solution procedure is put forth. As an 
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analytical formulation, the costs are assumed to be trapezoidal fuzzy number. These fuzzy 

numbers sequentially defined by ranking fuzzy numbers with respect to the best 

approximation interval number. Hence, this model highly influences the reduction of total 

cost to balance the demand and shortage under inflationary environment. 
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