

A Review on Diagnostic of Autism Spectrum Disorder Based on the Machine Learning Approaches

M.KAVITHA¹, Dr.M.KASTHURI²

 ¹Research Scholar, Department of Computer Science, Bishop Heber College, Affiliated to Bharathidasan University, Tiruchirappalli-620017.
²Assistant Professor, Department of Computer Science, Bishop Heber College, Affiliated to Bharathidasan University, Tiruchirappalli-620017.

Email: ¹kavitha.ca@bhc.edu.in, ²kasthuri.ca@bhc.edu.in

Abstract- Autism Spectrum Disorder is a disorder associated with genetic and neurological component with a lifelong effect on communication and interaction with others. Autism Spectrum Disorders children have some disturbance activities. Understanding their necessities is one of the most challenging tasks for caregivers. The classification algorithms helps to diagnose and improve the children's lives by applying the Machine Learning techniques. This paper provides a systematic review of the Autism Spectrum Disorder approaches in the context of Data Mining. The central goal of this review is to recognize the important research trends in the field of Autism Spectrum Disorder. The analysis classification methods for Autism Spectrum Disorder approaches is provided based on evaluation metrics such as Accuracy and Sensitivity.

Keywords—ASD, Machine Learning, Supervised Learning, SVM, Naive Bayes, Accuracy.

1. INTRODUCTION

Data mining is a technique that deploys data analysis methods and algorithms to extract meaningful information from data. The part of data mining in support of healthcare varies with the requirements and the available technologies. Data mining emphases on retrieving patterns from a given data set by using many concepts of Machine Learning (ML), database systems and statistics. Data mining which is a field which is the analysis of large data sets to identify irregularities, dependencies, interesting patterns. Data mining techniques can be classified as Supervised and unsupervised. Supervised learning is a type of machine learning algorithm which uses a known dataset.

Supervised learning has two types of algorithms:

1) Classification (for categorical values)

2) Regression (for continuous values)

Classification is one among the data mining tasks. Classification algorithms are employed to construct classification models that are deployed for prediction. The constructed model is first trained with some random data known as training data and then it is deployed for prediction on the unseen testing data.

International Journal of Aquatic Science ISSN: 2008-8019 Vol 12, Issue 02, 2021

Autism Spectrum Disorder (ASD) is rising and increasing steadily in the recent years. Data mining based techniques are very much useful in predicting ASD in children and adults. Generally the prediction can be done only with behavioural attributes and without doing any clinical diagnosis. With the help of novel ASD data mining based detection techniques, early detection of autism can be done, the adverse situation can be avoided and finally costs associated with delayed diagnosis can be significantly reduced. Autism Spectrum Disorder is a disease associated with the brain development. ASD may be seen at a very early age. Autism Spectrum Disorders are common in boys than in girls. It distresses a child's behaviour and interaction. It affects a child's understanding and social bonds. Apart from this children with ASD experience various types of symptoms viz.

- 1) Trouble in interacting with others
- 2) Monotonous behaviours
- 3) Struggling to function properly in carrying out day-to-day activities.

ASD screening is normally conducted by a medical specialist. Diagnosing the ASD will have various assessment tools is also known as screening tool which have wide range of intelligence quotient. The intelligence quotients contains of questionnaire used for specific age groups which aims to investigate whether child, adolescent and adult have symptoms of ASD. The ASD process involves collecting a large number of responses of the child or adult behaviour either given by the parents or a caregiver. The result of the analysis can help us in understanding the skills, the health condition and education styles to be adopted for such people. It also can help us in taking precautions against certain practices which may worsen the victim's condition. The major part of the people with autism in India are unlike diagnosed and they did not receive the assistance they need. The Medical Professionals misunderstood the status of patients because of their lack of knowledge for diagnosing autism illnesses.

2. RELATED WORKS

Data mining provides us with various techniques and during this paper we might be focussing on the classification technique.

Logistic regression is a calculation used to expect a binary final results: both something happens, or does not. This can be exhibited as yes/no, pass/fail, alive/useless. Naive Bayes calculates the opportunity of whether or not a information point belongs inside a sure class or does no longer. In text evaluation, it may be used to categorize phrases or terms as belonging to a prese "tag" (class) or no longer. k-nearest neighbours (k-nn) is a sample reputation algorithm that makes use of training datasets to discover the okay Closest spouse and children in destiny examples. A choice tree is a supervised getting to know set of rules that is perfect for type issues, as it's able to order instructions on a particular degree. It really works like a drift chart, keeping apart facts factors into two comparable classes at a time from the "tree trunk" to "branches," to "leaves," wherein the categories become more finitely similar. The random wooded area set of rules is a spread of selection tree, in that, you first assemble a few-axis actual-world selection Timber with schooling facts, then healthy your new records inside one of the bushes as a "random wooded area". A guide vector machine (SVM) makes use of algorithms to educate and classify records within stages of polarity, taking it to a point beyond x/y prediction.

International Journal of Aquatic Science ISSN: 2008-8019 Vol 12, Issue 02, 2021

The table-I (Appendix-I) is illustrates the related works in ASD.

3. CONCLUSION

Data mining techniques plays vital role in the decision-making processes in many areas including social media, medical field and text analysis. By using ML techniques the precision, efficiency, specificity, accuracy, recall, and confusion matrix were computed for the dataset acquired from the UCI repository. The SVM, Naïve Bayes, KNN, AC, Random forest algorithms have been used in the classification. Based on that, all of those algorithms showed good performance in serving the autism patients, additionally to reinforce the prediction process that decide if the person has autism spectrum disorder or not. The acquired results indicate that the SVM method produces high classification scores, indicated by sensitivity, accuracy and f-measure. Through experiments we found that the SVM method is more effective than the other methods for ASD data classification.

4. **REFERENCES**

- R. Geetha Ramani and K. Sivaselvi, "Autism Spectrum Disorder Identification using Data Mining techniques", In: International Journal of Pure and Applied Mathematics, Vol. 117, pp. 427-436, 2017.
- [2] B.Tyagi, R.Mishra and N.Bajpai, "Machine Learning Techniques to Predict Autism Spectrum Disorder", In: IEEE Punecon, Pune, India, pp. 1-5, 2018.
- [3] Fadi Thabtah and David Peebles, "A New Machine Learning Model Based on Induction of Rules for Autism Detection", In: Heal Informatics journal, Vol. 26, pp. 264-283, 2019.
- [4] Gok Murat, "A Novel Machine Learning Model to Predict Autism Spectrum Disorders Risk Gene", In: Neural Computing and Applications, Vol. 31, pp. 6711-6717, 2019.
- [5] Kazi Shahrukh Omar, Prodipta Mondal, Nabila Shahnaz Khan, Md. Rezaul Karim Rizvi and Md. Nazrul Islam, "A Machine Learning Approach to Predict Autism Spectrum Disorder", In: International Conference on Electrical Computer and Communication Engineering, Cox's Bazar, Bangladesh, pp. 7-9, 2019.
- [6] Richard E. Griffioen, Steffie van der Steen, Theo Verheggen, Marie Jose Enders and Slegers, "Changes in Behavioral Synchrony during Dog-Assisted Therapy for Children with Autism Spectrum Disorder and Children with Down Syndrome", In: Journal of Applied Research in Intellectual Disabilities, pp. 1-11, 2019.
- [7] S.B.Shuvo, J.Ghosh and A.S.Oyshi, "A Data Mining Based Approach to Predict Autism Spectrum Disorder Considering Behavioral Attributes", In: 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, pp. 1-5, 2019.
- [8] Tania Akter, Md. Shahriare Satu, Md. Imran Khan, Mohammad Hanif Ali and Shahadat Uddin, "Machine Learning –Based Models for Early Stage Detection of Autism Spectrum Disorders", In: IEEE, Vol. 7, 2019.
- [9] Ugur Erkan and Dang N. H. Thanh, "Autism Spectrum Disorder Detection with Machine Learning Methods", In: Current Psychiatry Reviews, Vol. 15, pp. 297-308, 2019.
- [10] Pooja Rani, "Emotion Detection of Autistic Children Using Image Processing", In: Fifth International Conference on Image Information Processing (ICIIP), pp. 532-535, 2019.
- [11] R. Abitha, and S.Mary Vennila, "A Swarm Based Symmetrical Uncertainty Feature Selection Method for Autism Spectrum Disorders", In: IEEE Xplore International Conference on Inventive Systems and Control (ICISC 2019), pp.665-669, 2019.

- [12] S.Sadiq, M.Castellanos, J.Moffitt, M.Shyu, L.Perry and D.Messinger, "Deep Learning Based Multimedia Data Mining for Autism Spectrum Disorder (ASD) Diagnosis", International Conference on Data Mining Workshops (ICDMW), Beijing, China, pp. 847-854, 2019.
- [13] Suman Raj and Surfaraz Masood, "Analysis and Detection of Autism Spectrum Disorder Using Machine Learning Techniques", In: Elsevier, pp. 994-1004, 2020.
- [14] Anshu Sharma and Dr. Poonam Tanwar, "Deep Analysis of Autism Spectrum Disorder Detection Techniques", In: IEEE Xplore, pp. 455-459, 2020.
- [15] Jaber Alwidian, Ammar Elhassan and Rawan Ghnemat, "Predicting Autism Spectrum Disorder using Machine Learning Technique", In: International Journal of Recent Technology and Engineering, Vol. 8, pp. 2277-3878, 2020.
- [16] N. Priya, and C. Radhika, "Effective Implementation of Pre-Processing Techniques in Machine Learning for Autism Spectrum Disorder", In: International Journal of Innovative Technology and Exploring Engineering (IJITEE), Vol-9, Issue-5, pp.2253-2257, 2020.
- [17] R. Abitha, and S. Mary Vennila, "A Proficient Optimized Feature Selection Method Germane for Autism Spectrum Disorder Classification", In: International Journal of Scientific & Technology Research, Volume-9, Issue-02, pp.1133-1137, 2020.
- [18] Shuaibing Liang, Aznul Qalid Md Sabri, Ady Alnajjar and Chu Kiong Loo, "Autism Spectrum Self-Stimulatory Behaviors Classification Using Explainable Temporal Coherency Deep Features and SVM Classifier", In: IEEE Xplore, Volume-9, pp.34264-34275, 2021.

Name	Ye	Title	Propose	Data Set	Accurac	Advanta	Limitations
of the	ar		d		У	ge	
Autho			Methods		-	_	
r							
R.Gee	20	Autism	Supervis	UCLA's		The	Ensemble
tha	17	Spectrum	ed data	Center for	Random	methodo	classification
Rama		Disorder	mining	Autism	tree	logy can	is applied on
ni,		Identificat	technique	Research	classifier	be used	these features
et.al		ion using	s are	and	with	to assist	and no
[1]		Data	applied,	Treatment	Fisher	the	improved
		Mining	Naive	(CART)	feature	medical	results have
		Technique	Bayes,	[15].	selection	practitio	been
		S	SVM,	Total ASD	achieved	ners in	obtained.
			Random	60. Males	a higher	the	
			Tree,	52.	accuracy	identific	
			C4.5,	females 8	of	ation of	
			CS-CRT	Total TD	88.46%	ASD	
				45			
				Males 38			
				and 7			
				female			

APPENDIX-I TABLE-I RELATED WORKS

Bhaw ana Tyagi, et.al, [2]	20 18	Machine Learning Technique s to Predict Autism Spectrum Disorder	KNN, SVM, LR, CART, Naïve Bayes, LDA	UCI Machine learning	LDA Accurac y 72.2024 %	Compara tive analysis of the performa nce of different algorith ms to diagnose ASD	Only adult people from the age of 16 to 17 years were considered as samples.
Fadi Thabt ah, and David Peeble s, et.al, [3]	20 19	A New Machine Learning Model Based on Induction of Rules for Autism Detection	logistic regressio n Decision tree (CART), neural network and CHAID algorithm s, Random Forest	Real data sets collected using a mobile application called ASDTests and University of California Irvine Repository (UCI)	logistic regressio n produced Accurac y 95%	Least number of items required for screenin g. Sensitivi ty and specificit y improve d.	Only used for adults. Toddlers are not including.
Gok Murat [4]	20 19	A Novel Machine Learning Model to Predict Autism Spectrum Disorders Risk Gene	Naive Bayes, Bayes network, Random forest, Linear SVM, RBF SVM	BrainSpan Atlas of the Developing Human Brain developme ntal transcripto me dataset, The dataset consists of 366 known ASD genes panning from 2128 disease genes	RBF SVM Produced Accurac y 83.6%	Imaging and biomark ers are tools for diagnosti c early ASD	Proposed model achieved 83.6 % Ensemble of classification provide better accuracy.
Saad Sadiq, et.al, [12]	20 19	Deep Learning Based Multimedi	Linear Regressi on, Nearest	UCI and real data set	84.7%	The proposed framewo rk	Not applicable to under 4 years

		a Data Mining for Autism Spectrum Disorder (ASD) Diagnosis	Neighbo ur, Naïve Bayes, Random forest Support Vector machines			achieved state-of- the- art- predictiv e diagnosti c estimate s of ASD severity compare d to other leading algorith ms.	of age children.
Kazi Shahr ukh Omar, et.al, [5]	20 19	A Machine Learning Approach to Predict Autism Spectrum Disorder	Merging Random forest, CART, ID3	People from with and without autistic AQ-10 data set and 250 real data set are collected.	Overall accuracy of 97.10%	Usability is high. The proposed system can be enhance d effective ly by collectin g user experien ce.	Lack of large data set. Below 3 years of aged kids cannot use this.
Ugur Erkan, et.al, [9] Richar	20 19 20	Autism Spectrum Disorder Detection with Machine Learning Methods Changes	SVM, RF,KNN Dog-	UCI data base, AQ- 10-Adult, AQ-10- child, AQ- 10- Adolescenc e UCI, Raw	RF-99% SVM- 90% KNN showed lower than RF and SVM 78.2%	We detect ASD easily, fast and very high accuracy Test	Accuracy depends on the data sets.
d Eric Griffi oen, et.al, [6]	19	in Behaviora l Synchron y During Dog- Assisted Therapy for Children	assisted therapy	child Behaviour Checklist(C BCL)		synchron y hypothes is for ASD child	has also been criticized for only measuring children's emotional and behavioural problem, but not the

		with Autism Spectrum Disorder and Children with Down					presence or absence of pro-social behaviour. Measures failed to reach
		Syndrome					significance and unclear
Shaon Bhatta Shuvo , et.al [7]	20 19	A Data Mining Based Approach to Predict Autism Spectrum Disorder Consideri ng Behaviour al Attributes	Random forest classifier algorithm	UCI, Real time data sets were collected.	Overall accuracy of 96%.	Accurac y, sensitivit y, specificit y were calculate d	Random Forest is difficult because it gives different results in different times
Tania akter, et.al [8]	20 19	Machine Learning – Based Models for Early Stage Detection of Autism Spectrum Disorders	SVM log, ZScore, FT methods	Kaggle and the University of California- Irvine (UCI)	Toddler- 98.77%, Child- 97.20%, Adolesce nt- 93.89% Adult 98.36%	It will useful for physicia ns to detect ASD in early stage	Need more number of data set for detection of ASD and neurodevelop mental disorder
Pooja Rani [10]	20 19	Emotion Detection of Autism children using Image Processin g	SVM, Neural Network	Data set downloade d from google 40% used for testing purpose, 60% for training purpose	SVM gave better Accurac y 90%	High performa nce is achieved	Age and gender attributes are not used for prediction of facial expressions.
Suma n Raj and Surfar az	20 19	Analysis and Detection of Autism Spectrum	Naïve Bayes, Support Vector Machine,	Datas collected from UCI Repository	Among all SVM and CNN model	Compari ng more than one algorith ms helps	This algorithm could be more efficient if

Masoo d [13] R.Abit ha, and S. Mary Vennil a [11]	20 19	Disorder Using Machine Learning Technique s A Swarm Based Symmetri cal Uncertaint y Feature Selection Method for Autism Spectrum Disorders	KNN, logistic regressio n, Convolut ional neural network Feature selection methods like SU, IG, CS and optimizat ion technique s like PSO, GA and ACO	Three types of dataset used Adult, children, adolescent Datas collected from UCI Repository	gave best result, accuracy 98.30% Naïve Bayes Accurac y 86.747 %	in achievin g the Highest accuracy Propose d SSU- FS method provided better results than the existing methods.	they would have predicted for infant data sets also No clear explanation on the identification of the redundant and irrelevant features was given
N. Priya, C. Radhi ka [16]	20 20	Effective Implemen tation of Pre- Processin g Technique s in	were explored Random Forest, SVM, Logistic Regressi on, KNN, Naive	Dataset from Kaggle Repository. The data set consists of 1054 observation	Preproce ssing techniqu e and Random forest method shows	The proposed techniqu e sstandar dized the data efficientl	The minimal subset feature were not identified which were essential to detect the ASD in early
	20	Machine Learning for Autism Spectrum Disorder	Bayes.	s of 18 features	92% accuracy	y to carry out successf ul analysis	stage
Anshu Sharm a and Dr. Poona m Tanwa r [14]	20 20	Deep Analysis of Autism Spectrum Disorder Detection Technique s	SVM, Random forest Scan, decision trees, logistic regressio n	250 Real dataset collected from different age group with and without autism people.	Among all SVM gave best result, accuracy 98.27%	Accurac y and precision s are improve d	only structured dataset considered for diagnosis

ĺ	Jaber	20	Predicting	Associati	21	Overall	Good	Modifying
	Alwid	20	Autism	on	attributes to	accuracy	Perform	one of the
	ian,		Spectrum	Classific	cover 704	of 97%	ance in	existing AC
	et.al,		Disorder	ation	instances,		serving	algorithms
	[15]		using		where 515		the	achieve low
			Machine		instances		autism	accuracy
			Learning		classified		patients.	2
			Technique		under no		Gave a	
			1		autism class		strong	
					label and		indicator	
					189		about the	
					instances		potential	
					under		power of	
					autism class		critical	
					label		domain.	
	R.Abit	20	А	Symmetr	Dataset was	89.41%		Justification
	ha.	$\frac{1}{20}$	Proficient	ical	composed	0711270	proposed	for the
	and S.		Optimized	Uncertai	of several		CA-FS	selection of
	Mary		Feature	nty and	special		method	robust
	Vennil		Selection	Cultural	schools in		extracted	features was
	a [17]		Method	Algorith	and around		the least	not clearly
	•• [1 /]		Germane	m based	Chennai.		number	given
			For	feature	Novel		of	81,011
			Autism	selection	dataset		features	
			Spectrum	(ca-fs)	collected of		than the	
			Disorder	method	75		existing	
			Classificat	memou	characterist		feature	
			ion		ics		selection	
			1011		105		techniqu	
							es	
	Shuai	20	Autism	Unsuperv	Real-time	State-of-	Many	Small data set
	hing	$\frac{20}{21}$	Spectrum	ised	detection of	the-art	unlabelle	was deployed
	Liano	21	Self-	Temporal	the	results by	d autistic	so that it
	Aznul		Stimulator	Coherenc	children's	combinin	self_	cannot be
	Oalid		V	v Deen	behaviour	σ the	stimulat	generalized
	Md		y Behaviors	y Deep Networks	and SSBD	unsuperv	ory	to fit high
	Sabri		Classificat	(TCDN)	[25] was	ised and	behaviou	volume data
	Chu		ion Using	method	selected as	supervise	rs videos	volume auta
	Kiong		Explainab	with	our training	d	were	
ļ	Loo		le	Ontimise	test dataset	learning	explored	
	[18]		Temporal	d	75 celf_	methode	to obtain	
	[10]		Coherenc	Supervis	stimulatory	73.6%	thorough	
			v Deen	ed	behaviour	, 2.070	knowled	
			Features	learning	videos		ge	
			and SVM	methods	10005		50	
			Classifier	(such as				
				SVM k-				
				NN.				
				1 1 1 1 1			1	

Disc nant	rimi)		