

Boosting Image classification using Refined Feature Extraction-A Case study of Image Classification

K.Kalaiselvi¹, Dr.M.Kasthuri²

¹Research Scholar, Bishop Heber College, Trichchirappalli -17. ²Assitant Professor, Bishop Heber College, Trichirappalli-17 (Affiliated to Bharathidasan University), Trichirappalli, Tamilnadu.

Abstract-In real life large amount of data are collect and understand not possible. Here feature extraction helps to reduce the amount of data without losing any important or relevant information. This paper survey on pre-processing, feature extraction for deep convolution neural network, support vector machine classifier. Feature extraction is the process of transforming image data pixel into binary or real value. Feature extraction involves identifying and extracting features based on applications. A designated convolutional neural network feature extraction algorithm extracts most significant features by the first layer of a convolutional neural network or layers of network. Finally, the challenges in convolutional neural network for future extraction research re discussed. Keywords: Feature extract, patch match, convolutional neural network, support vector machine classifier.

1. INTRODUCTION

Digital image processing is a very popular and rapidly growing area application under computing engineering. Digital image processing is the technology of manipulating these groups of pixels to enhance the quality of image. in Digital Images get artificial during data transmission and compression [1]. Digital image processing is a rising technology which helps to enhance the image quality. Noise restraint using mean filtering with grayscale images of a fixed pixel block size is considered [2]. Original image obtain from the image acquisition system are affected by different conditions, such as uneven brightness and noise image. For this reason, the original images must be retransmitted. Preprocessing technique can be divided in to three process image grating, image geometric changing and image enhancement. The purpose of image grating is to transform from the color image into grayscale images to reduce the amount of data. In this time, image geometric is changing to correct the image error caused by the image acquisition system. Image enhancement used for enhance the image effects and remove the background noise expands difference between features within the image and improve the image quality. Feature extraction is reducing the feature dimension and improves the accuracy. Here there are three methods existing, such as support vector machine, artificial neural network and decision tree. In Artificial neural network convolutional neural networks are used to feature extraction and classification. Convolutional neural network used to reduce high level feature. There are various types of approaches for image classification, most of classifier such as maximum likelihood, minimum distance and making definitive decision. Support vector machine for image classification. Classification based on features extracted from the images. In regulate to

produce better classification results and the focus is on the feature extraction level. In order to distinguish a pattern that can provide some useful insights into what combination of features is most likely to result in an deviation and this knowledge is then given to machine learning algorithms. The prediction is explored using various machine learning classification algorithms such as Naive Bayes, Support Vector Machine, Artificial Neural Network and Logistic Regression [3]. Support Vector Machine chooses the extreme points/vectors that help in creating the hyper plane.

2. REVIEW OF LITERATURE

This review paper shows details such as dataset, adopted method, advantage and limitation of existing research papers based on Patch Match, Convolution Neural Network and Support Vector Machine.

III. Challenge in feature extraction

1. Identify and extract object features.

2. Visual data is much harder in noisy unregimented 2D or 3D.

3. Some of the feature extraction algorithms wouldn't be feasible to run if the datasets are huge.

4. Another challenge is Scalability.

5. The problem of extracting features from given input data is of critical importance for the successful application of machine learning.

3. CONCLUSION

Image processing is the growing concept in any field such as medical, education, industry, etc. In the world, image processing delivers significant information on decision making. The collection of raw images is not suitable for direct processing due to the various noises present in database. Some of the noise is low contrast, image acquisition, poor illumination, etc. These unwanted noises are removed by various pre-processing techniques. Feature extraction aimed at extracting the most effective and essential features that reflect the target image. Using features extracted from a Convolutional neural network, patch match and support vector classifier provided good results. The research paper mainly focuses on review papers details in convolution neural network, patch match, support vector machine adopted method, advantage and satisfy the limitation.

4. **REFERENCES**

- M.Kasthuri, "Mean Filtering to De-Noising Image Using Various Block Size", International Journal of Advanced Scientific Research and Management, Volume 4 Issue 6, pp. 43 – 47, ISSN 2455-6378, June 2019.
- [2] M.Kasthuri, "Image of De-Noising Using Linear Mean Filter For Various Block Size ", International Journal of Scientific & Technology Research, Volume 8, Issue 10, pp. 2606 – 2608, ISSN 2277-8616, October 2019.
- [3] M.Kasthuri and M. RiyanaJency, "Lung Cancer Prediction Using Machine Learning Algorithms on Big Data: Survey", In: International Journal of Computer Science and Mobile Computing, Vol.9 Issue.10, pg. 73-77, ISSN 2320–088X, October- 2020.

- [4] Yingqian Wang, Jungang Yang, Longguang Wang, Xinyi Ying, Tianhao Wu, Wei An and Yulan Guo, "Light Field Image Super-Resolution Using Deformable Convolution", In: IEEE: Transactions on Image Processing, Volume-30, pp.1057-1071, 2021.
- [5] Daniele Ancora and Andrea Bassi, "Deconvolved Image Restoration from Auto-Correlations", In: IEEE Transactions on Image Processing, Volume-30, pp.1332-1341,2021.
- [6] SerafeimMoustakidis and Patrik Karlsson, "A Novel Feature Extraction Methodology using Siamese Convolutional Neural Networks for Intrusion Detection", In: Springer, Volume-10, pp.1-13, 2020.
- [7] BiserkaPetrovska, Tatjana Atanasova-Pacemska, Roberto Corizzo, Paolo Mignone, PetreLameski and EftimZdravevski, "Aerial Scene Classification through Fine-Tuning with Adaptive Learning Rates and Label Smoothing", In: Applied Science, Volume-10, pp.1-25, 2020.
- [8] JingruHou, Yujuan Si, and XiaoqianYu, "A Novel and Effective Image Super-Resolution Reconstruction Technique via Fast Global and Local Residual Learning Model", In: 4th International Conference on Image Vision and Computing, Applied Science, Volume -1, pp.1-12, March 2020.
- [9] Jun-e Liu, and Feng-Ping An, "Image Classification Algorithm Based on Deep Learning-Kernel Function", In: Hindawi Scientific Programming, Volume-2020, PP.1-14, ISSN: 1875919X, 10589244, January 2020.
- [10] ChaohiTang,Qingxin Zhu, Wenjun Wu, Wenlin Huang, Chaoquan Hong, and XinzhengNiu, "PLANET: Improved Convolutional Neural Network with Image Enhancement for Image Classification", In: Hindawi Mathematical Problems in Engineering, Volume-2020, PP.1-10, January 2020.
- [11] Seung-Wook Kim, Sung-Jin Cho, Kwang-Hyun Uhm, Seo-Won Lee, and Sung-JeaKo, "Evaluating Parameterization Methods for Convolutional Neural Network (CNN)-Based Image Operators", In: IEEE Xplore, Volume-1, pp.1862-1870, June 2019.
- [12] Qingyu Li, Yileishi,Xin Huang and Xiao Xiao Xiang Zhu, "Building Footprint Generation by Integrating Convolution Neural Network with Feature Pairwise Conditional Random Field(FPCRF)", In: IEEE Transactions on Geoscience and Remote Sensing, pp.1-18,2019.
- [13] Wen-Shuai Hu, Heng-Chao Li, Lei Pan, Wei Li, Ran Tao and Qian Du, "Feature Extraction and classification based on Spactial-Spectral Convlstm Neural Network for Hyper Spectral Images", In: IEEE Transaction on Geoscience and Remote Sensing,pp.01-15,2019.

Appendix A: Review of Literature-Table1

l able-1								
	S.N	Title	Yea	Proposed	Dataset	Advantage	Limitation	
0		r	method					
	1.	Light field	202	1.Bicubic	1.Light field	1.It is used to	1.Improve	
		image super-	1	2.VDSR	dataset	generate high-	the visual	
		resolution		3.EDSR	a)EPFL	quality (i.e.,	quality of	
using			4.RCAN	b)HClnew	high-resolution	reconstructe		
deformable			5.ESRGAN	c)HCold	and angular	d images		
convolution[4			6.LFBMS5D	d)INRIA	consistent)	and achieve		
]		7.GBRESLF	e)STFgantry	2.LFs to	light field	

T 1 1 1

2	Deconvolved	202	8.LFSSR 9.LF-InterNet 10.LF-DFnet	1 A Jarge	benefit downstream tasks	image super resolution with large scaling factors
2.	Image Restoration from Auto- Correlations[5]	1	divergence optimization 2.Turning formalism into an iterative scheme inspired by Bayesian based approaches	number of experimental situations, ranging, from adaptive astronomy to optical microscopy.	optimization is proved efficient and feasible.	reduction in phase retrieval method
3.	A novel feature extraction methodology using siamese convolutional neural networks for intrusion detection[6]	202 0	1.Fuzzification2.Vec2im(Vector to image)3.Normallization4.ConvolutionneuralnetworkSiamese5.Convolutionneuralnetwork6.Rectifiedlinear unit7.Adaptivemomentestimation8.Lineardiscriminantanalysis9.Supportvectormachine10.Adaboost11.Randomforest12.Decisiontree13.K-nearestneighbor	1.NSL-KDD	1.Computation ally fast 2.Simple to implement 3.Work well with high dimension	1.Small range data

			classifier			
4.	Aerial scene	202	1.ResNet50	1.Aerial	Perform well	It is not
	classification	0	2.Linear	image dataset	with non linear	suitable for
	through fine-		decay	a)NWPU-	boundary	large
	tuning with		scheduler	b)RESISC45	depending on	training set.
	adaptive		3.Inception	dataset(Googl	the kernel used.	
	learning rates		V3	e earth		
	and label		4.Cyclical	imagery)		
	smoothing[7]		learning rate			
			5.Xecption			
			6.Softmax			
			classifier			
			linear 7.SVM			
			classifier			
			8.RBF			
			9.SVM			
			classifier			
5.	A Novel and		1. Super	1.Set5	1.Reduces	1.Computati
	Effective	202	Resolution	2.Set14	parameter size.	on time is
	Image Super	0	Convolution	3.Urban 100	2.Reduce the	high
	Resolution		Neural	4.BSD100	computational	
	Reconstructio		Network.		complexity	
	n Techniques		2. Fast global			
	via Fast		and local			
	Global and		residual			
	Local		learning			
	Residual		model.			
	Learning		3. Deeply			
	Model [8]		Recursive			
			Convolution			
			Network.			
			4. Deep			
			Posidual			
			Network			
			5 Fast Super			
			Resolution			
			Convolution			
			Neural			
			Network			
			6. Very deep			
			Convolution			
			Neural			
			network.			
6.	Image	202	1. Stacked	1. Daily	1. Deep	1. Lower
	classification	0	Sparse Auto	database:	learning	accuracy
	Algorithm		encoder.	cannon, coin,	complete	Ĵ
	based on deep		2. Stacked	duck, horse,	complex	

	learning kernel function [9]		Sparse Auto encoder model and Training ideas. 3. Classifier design for optimizing nonnegative sparse representation of kernel functions.	microwave, mouse. 2.Medical Dataset Cancer Impact Archive: TCIA-CT open source database. 3.OASIS- MRI nuclear magnetic resonance biomedical image database.	function. 2. Reduce dimension information. 3. Image classification effect is improved.	
7.	PLANET: Improved Convolutiona 1 Neural Network with Image Enhancement for image classification [10]	202 0	1.PLANET Inner move 2.TSCNN 3.Resnet18 4.GoogleNet without inner move	1.CIFAR-10 2.CIFAR-100 3.ICIAR(BA CH) 2018	 High resolution image classification. Inner move is effective and feasible for data enhancement in image classification task. 	1. Inner move is not investigated on image segmentatio n and object detection.
8.	Evaluating parameterizat ion methods for Convolutiona l neural network (CNN) - based image operators [11]	201 9	 Training Separated networks Concatenati ng one-hot vectors Concatenati ng parameter values Decoupled network. 	1.Berkeley segmentation dataset 2.Wateloo Exploration Data set	1.De-noising, de-blocking image smoothing and super resolution.	1. Non linear approach
9.	Building footprint generation by integrating convolution neural network with feature pair	201 9	1.Proposedbuildingfootprintgenerationframework2.Datapreprocessing3. Future pair	Study Sites cover four cities	1.It is effective in producing sharp boundaries and fine-grained segmentation results.	1. Very few instance segmentatio n types are used.2.Small typestypesof graph

	wise conditional random field[12]		wise conditional random field.			models used.	are
10.	Feature Extraction and classification based on Spactial- Spectral Convlstm Neural Network for Hyper Spectral Images[13]	201 9	1.Long short term memory 2.2-D Spatial spectral Convolutional LSTM 3.3-D Spatial spectral Convolutional LSTM	Hyper spectral datasets 1.Indian Pines 2.Salinas Valley 3.University of Pavia	2.Fast and efficient computation and quick data training	Small training Size	