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Abstract. This article presents a H2-norm optimal model technique for creating a reduced 

order model (ROM) / model order reduction (MOR) for the linear time-invariant (LTI) 

SISO stable system. The computational shortcut that results in models with lower-order 

frequency and time responses which are less similar to the original, The H2-norm optimum 

model order decrease of the SISO model created which is based on the Gramian matrices 

and Krylov subspace algorithm. The Grampian matrix, which is derived from the 

controllability and observability matrices, the effectiveness of the projected algorithm is 

established by the benchmark SISO system. The efficiency is depends upon the 

preservation of dynamic characteristics of the original system and it is evaluated through 

the Root Mean Square Error (RMSE), frequency and time domain specifications. 

Keywords: ROM / MOR, H2-norm,  Krylov subspace, RMSE, Time and Frequency Domain 

Specifications. 

 

1. INTRODUCTİON  

 

For engineering processes, a system of large-scale differential equations is often used to de-

scribe the complex physical systems that appear. The role of simulations has increased great-

ly in the electronics and aerospace industries as a result of increased computerization and the 

mechanization of the design process. On the other hand, models that are proven to be reliable 

are accompanied by an increase in variables, which makes simulations longer and more ex-

pensive. Therefore, model reduction is required. The goal is to have the dynamic characteris-

tics of the model approach accuracy as closely as possible, but to have as few variables in-

volved in the model as possible. To express it another way, with respect to keep input and 

output characteristic of the model being close to what it was as possible, while also reducing 

the state variable count. An additional reward be alive the preservation of additional proper-

ties like stability, passivity, and so on. This study to reorder the system's components so that 

it could be fully controllable and observable, Direct simulation of these differential equations 

is generally not recommended because of a computational burden that is unacceptably high. 

A powerful design and control method for large-scale systems that can help significantly re-
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duce simulation computational costs is known as model order reduction (MOR) [1]. For dec-

ades, MOR has been the focus of many investigations. a variety of clever MOR techniques 

have been utilized to deal with the continuous systems [2]. In the majority of operations, ana-

lytical representation used to designate physical occurrences are described by partial differen-

tial equations, it is also possible to approximate these complex equations using the linear sys-

tems. Discrete systems that implement the Crank–Nicolson scheme are generated [3]. Several 

balanced truncation (BT) techniques have been developed for discrete systems [4]. The pro-

jections, like Krylov subspace methods and orthogonal polynomial techniques, have also 

been implemented [5] and H∞ optimal methods in [6].  

 

This approach to MOR of linear systems, which is called Chebyshev established, is described 

as being constructed on Chebyshev rational polynomials [7]. To build sets of lower-order 

models, estimates of the moments matching are proposed, and those estimations are utilized 

to build the reduced-order models. [8].  

 

In this paper, the double-sided case of the frequency-weighted H2-optimal MOR problem 

within the projection framework is considered. The main motivation for seeking a projection-

based solution is to avoid nonlinear optimization and benefit from the efficient Sylvester 

equation solver, particularly formulated for the projection based H2-optimal MOR algo-

rithms. The exact satisfaction of the optimality conditions is inherently not possible within 

the projection framework. However, the optimality conditions can be nearly satisfied, and the 

deviation in the satisfaction of the optimality condition decays as the order of ROM grows. 

The conditions for exact satisfaction of the optimality conditions are also discussed. In addi-

tion, a projection-based iterative algorithm is proposed that solves the Sylvester equations in 

each iteration to construct the required ROM. Near first-order optimality conditions are found 

for the double-sided frequency-weightedH2-optimal MOR problem when convergence oc-

curs. The efficacy of the projected algorithm is highlighted by dint of considering the bench-

mark numerical case. 

 

Preliminaries 

In the following, important preliminaries on LTI systems are summarized.  

 

3.1 State Space Models 

A general state space depiction of a linear time-invariant (LTI) model is given by 
     
     








tuDtxCty

tuBtxAtx
with NXNA  , NXmB  , pXNC  , and pXmD        (1)  

Let us denote a n
th

-order stable linear time-invariant model by m inputs and p outputs as H(s), 

which is represented such as     DBAsICsH 
1        (2) 

Let us denote  r
th

-order approximation about H(s) as  sH
~

, which is transcribed as 

    DBAsICsH 
 ~~~~ 1

with rXrA 
~

, rXmB 
~

, pXrC 
~

, and nr  .(3) 

 In projection based MOR, the state space matrices A
~

 , B
~

and C
~

 are computed by 

VAWA T 
~~

, BWB T 
~~

 and VCC
~~

                                                  (4) 

The controllable and observable gramians of the realization (Aw, Bw, Cw) as Pw and Q re-

spectively, which solve the following Lyapunov equations 

0 T

ww

T

wwww BBAPPA                                                                                      (5) 

0 w

T

wwww

T

w CCAQQA                                                                                    (6) 
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The local optimum  sH
~

of   2

2Hw sE satisfies the following first-order optimality conditions 

  0~
2

2





Hw sE

A
which implies 0 XX                                       (7) 

  0~
2

2





Hw sE

B
, which implies 0YDDY T

ii                                                (8) 

  0~
2

2





Hw sE

C
, which implies 0 ZZDD o

T

o                                              (9) 

With PQPQX T ~~
1212  , BQBQY T ~~

12  , PCPCZ
~~

12  , TT PQPQX 24242323    

  T

ii

T

i

T

i

T DBQCPQPQPQPQY 23342423231212

~
                                      

  T

o

T

o

T

o

TTTTT

o PCDPQPQPQPQBZ 24242334241214

~
  

3.2. Frequency-weighted Tangential Interpolation 

The aim is to construct a ROM that should be satisfied by the following conditions 

      0
~~

2~ 12

2

2





BQBQsEsW

B

T

Ho                                                            (10) 

      0
~~

2~ 12

2

2





PCPCsWsE

C
Hi                                                             (11) 

  








r
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T

ii D
s
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sH

1

~

~~
~


 

     fff BAsICsHF 
1 and      ggg BAsICsHG 

1  










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f
A
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A

0
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




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0
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A
Ag                                                               (12) 


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





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T
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DBCP
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B 13 and 










DB

B
B

o

g                                                      (13) 

T

T

i

T

i

T

f
DC

C
C 








  and 

T

o

T

ooo

TT

o
g

DCBQ

DDCBQ
C 












 014                                     (14) 

The conditions (10) and (11) are satisfied when the following tangential interpolation condi-

tions are satisfied. 

      iiii rHFrHF ~~~~~~
                                                                               (15) 

     i

T

ii

T

i HGlHGl 
~~~~~~

                                                                           (16) 

The poles i
~

 and residues  ii rl ~,
~

 of  sH
~

are not known apriori. Thus the interpolation points 

and tangential directions are initialized arbitrarily, and after every iteration, the interpolation 

points i are updated as i
~

  , and the tangential directions  ii bc ,  are updated as the residue 

 ii rl ~,
~

. The rational Krylov subspaces that seek to satisfy (15) and (16) are obtained. 

3.3 Conditions for Exact Satisfaction of the Optimality Conditions 

By expanding the Lyapunov equations (4) and (5) according to the structure of (Aw, Bw, 

Cw) in (3), it can be noted that P solve the following Sylvester equations 

  0
~~

2323  T

iiii

T

i BDPCBAPPA                                                                    (17) 

0
~~~~~~~~

2323  TT

ii

TT

i

T

i

T BDDBBCPPCBAPPA                                      (18) 
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0
~~~

13231212  TT

ii

TT

i

T

i

T BDDBBCPPCBAPPA                                  (19) 

  0
~~

02424  o

T

o

T

o

T

o

T CDQBCAQQA                                                 (20) 

0
~~~~~~~~

02424  CDDCCBQQBCAQQA o

T

o

TTT

o

TT            (21) 

0
~~~

014241212  CDDCCBQQBCAQQA o

T

o

TTT

o

TT                                (22)    

The order of the ROM increases, then     2

2Ho sEsW decreases. Consequently Q̂  and P̂ ap-

proaches Q and P respectively. The P and Q solved for the Lyapunov equations. The residu-

als R1 and R2 approaches zero. 

The main steps to obtain the ROM, here's how the process works: 

Step 1: Construct the state space matrices (A, B, C and D) from the original system transfer 

function identification of state space matrices (A, B, C and D) Matrices from the original 

state variable system. 

Step 2: Calculate the initial system's input and output weights 

Step 3: Initial values given to the ROM matrices  CBA
~

,
~

,
~

  

Step 4: Compute P and Q matrices 

Step 5: Fix the projection length 

Step 6: Compute the projection v, w from P and Q matrices 

Step 7: Find the decomposed matrices  WV
~

,
~

 

Step 8: Determine the ROM state space matrices  CBA
~

,
~

,
~

 

 4. The Quality of Model Order Reduction  

The dimension of the model reduction inaccuracy may be represented by the norm of the dif-

ference between G and the ROM Gr. This is possible through appraise the model reduction 

error using a scalar rGG  . The established ROMs should be able to closer to the H2 norm of 

the unique system. The H2 norm of compound appreciated function G(s) is well-defined as 

   








 


deGsG j

H

2

2 2

1
   (23)      

The Root Mean Square Error (RMSE) = 

   

N

iyiy

J

N

i

RMSE






 1

2
ˆ

                (24)                                                                                          

 5. Simulations 

In this part, the projected method in reduced order model order reduction in terms of a high-

er-order system.  

5.1 Illustrative Example 

Consider a 10
th

 order system with the following transfer function realization. This system 

models are reduced in different order, which is below the system order are given in Table 1. 

Fig. 1 and Fig. 2 depict the step output and frequency output of the original system and the 

ROM respectively.  

 

\ 
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 







































110910010 5s114485916. s 64135934  24002493s 

6376179s  122711s 4.1714371710911695.49

4182004673.4s155453416. s 62854022  s15867513.2 

2742122.4s 5.3344747.286409.165759

23

44678910

23

456789

sssss

sssss

sH Table: 1, Reduced 

Order Models 

 

2. RESULTS AND DISCUSSION 

 

Table 2 displays the model performance comparison for different order systems. The model 

of the system increases the RMSE and H2-norm value is also increased. The RMSE charac-

teristics of the different ROM with respect to original system is shown in Fig. 3. It is ob-

served that first order ROM gives like a decay exponential curve. When the order of the sys-

tem is increased, the characteristics of the system closer to the original system are apparent. 

The time output appearances of the systems is shown in Fig. 1. It is observed, here also the 

first order system reaches the steady state without damping and remaining systems are reach-

es the steady state with damping. Fig. 2 represents the Bode plot of the different order ROMs. 

It is observed that the original system, first order ROM and second order ROM are stable. 

The unity feedback closed loop stability for the ROM is shown in Fig. 4. From the Nyquist 

plot, it is observed that original, first and second order reduced models are having the closed 

loop stability and remaining ROMs are unstable. The second order model produces the mimic 

results to the original system in terms of stability. While the sixth order model performs bet-

ter, it is unstable. 

Order of 

ROM 
Transfer Function of ROM 

1 
0.1168s

0.1917


 

2 
0.0302s 0.1879s

0.0496
2 

 

3 
0.0123 0.0933s 0.3193ss

0.0201
23 

 

4 
0.006 0.0429s 0.2138s 0.416ss

0.0098
234 

 

5 
0.0041s 0.0316 0.1452ss 0.4139s 0.6753s

0.0067
2345 

 

6 
0.0108 0.0849ss 0.3842s 1.1497 1.9332s 2.9552ss

0.0177
23456 
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Fig. 1 Time Response                             Fig. 3 Error Analysis 

 
Fig. 2 Frequency Response               Fig. 4 Nyquist Stability Plot 

 

Table: 2, Reduced Order Models 

Order of ROM RMSE BFR in % H2 - Norm 

1 0.426689715 89.59 0.3966 

2 0.481920171 93.31 0.4656 

3 0.506597532 95.23 0.5476 

4 0.525094762 96.29 0.6272 

5 0.538437403 96.5 0.6871 

6 0.541855594 96.62 0.7064 

3. CONCLUSION 

 

In this article the 10
th

 order model is utilized to prove the efficiency of the proposed MOR 

method. The Krylov subspace algorithm is used for projection in state space and utilizing the 

H2-norm with Gramian matrices and Lyapunov equations.  The second order model produce 

the mimic results to the original system in terms of stability. The stability of the system ana-

lyzed through the Bode plot and Nyquist plot. The sixth order model gives the better perfor-
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mance than the second order reduced model, due to lack of preservation stability the model is 

not taken for further analysis. Reduced-order models are more computationally simple than 

procedures described in previous research, which also results in reduced-order models that 

have a similar frequency and time response. The efficiency is depends upon the preservation 

of dynamic characteristics of the original system and it is evaluated through the Root Mean 

Square Error (RMSE), frequency and time domain specifications.  
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