
International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 03, 2021

1261

A Review On Various Lossless Data

Compression Technique For Machine

Learning And Iot Data

Meenakshi Dhanalakshmi
1
,Divya.P

2
,D.Palanivel Rajan

3

1,2

Assistant Professor ,Dept of CSE, Bannari Amman Institute of Technology,

Sathyamangalam, India
3
 Professor, Dept of CSE, CMR Engineering College, Telangana, Hyderabad,

Tndia.

Email:
1
meenakshidhanalakshmi@bitsathy.ac.in,

2
divyap@bitsathy.ac.in,

3
palanivelrajan.d@gmail.com

Abstract:

Compression is the most important technique during the data transmission from one place

to another place. Using data compression, the volume of a file can be reduced which will

help to decrease the need of new hardware, improve database performance, speed up

backups, Provide more secure storage. Compression has two different types which

classified as either lossy or lossless. Lossless compression methodology compresses the

data to be transferred without any missing in original data. Using this compression the

information should not get changed at the place of destination. For example, many sensor

parameters can be sensed using sensors placed in various places, which data should be

collected and should reach the server without any data loss. In machine learning domain,

many data are collected in day by day manner these data should be communicated without

any data loss. These kinds of methodology can be used for the secure communication while

processing the data. There are many lossless data compression algorithms are available for

us to performing the data compression techniques like Huffman coding, Run length

Encoding techniques, etc., In this paper we are going to discuss about how data

compression techniques will take exciting role in era of rich data used in Machine

learning, IoT and so on. We are going to compare algorithms based on energy,

performance, encryption and decryption during compression which algorithm will produce

better result for these kinds of techniques.

Key words: Huffman coding, Run Length Encoding, Arithmetic Encoding and Dictionary

Based Encoding are available

1. INTRODUCTION

In modern days everywhere and everything is data but the secure data communication to the

target place is the question mark. For this the data compression methodology is used for

secure data communication and also without any reduction in the data. IoT, Machine learning

are the domain uses data apparently for various process like communication, analysis,

mining, data processing, image processing, evaluation etc., For this protected

communication, data compression methodology is used.

mailto:meenakshidhanalakshmi@bitsathy.ac.in
mailto:divyap@bitsathy.ac.in
mailto:palanivelrajan.d@gmail.com

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 03, 2021

1262

Restive exact

Original

Message

D Retrieved

Message

Data compression saves storage space, accelerates the transfer of files and reduces storage

and bandwidth costs. This technique is extremely useful when transferring the great number

of data that are large in size. As data compression is used in an application to transfer data,

speed is the key objective. Transmission speed is based on the number of bits sent, the time

taken for encode the sending message and decode the receiving message of the original data

sent. In a storage application of the data, the degree of compression is the main concern. The

compression techniques are categorized as lossy or lossless [1]. Lossless compression as

shown in Fig.1 is used to rebuilds to the exact data after the compression of data without any

loss. These methods are used in the application like storing health records, text, and photos

for legal purposes, computer- executable file.

 decoder

Fig.1. Lossless Compression

Lossy compression as in Fig.2 is also to rebuilds the data with data loss, and it is considered

as irreversible compression. In this technique, the decompression method maybe results in an

estimated to rebuild. These techniques are used for the application like multimedia images,

video, and audio files to achieve more compact during data compression.

 Encode Origional message

 Encoder

Fig.2. Lossy Compression

Various lossless data compression algorithms are in practice. Some lossless techniques are

like Huffman Coding, Run Length Encoding, and Arithmetic Encoding,in this paper, we are

going to discuss three compression techniques how they are going to support the data in

recent technologies like Machine Learning, IoT.Based on compressing a text data the

performance is evaluated and compared.

Huffman Coding

This is the one of the methods of lossless data compression. This technique is used to allot

the variable- length codes to the input characters, in which the length is depends on character

frequencies. The most frequent character gets the least code and the least frequent character

gets the biggest code. Some of the input characters may just need 2 or 3 bits, while other

characters which need 7, 10 or 12 bits.

The Huffman coding is classified as Static Huffman code and Dynamic Huffman coding. In

this Static coding, the frequencies assigned to the input does not changed during

compression, in dynamic huffman source and destination part of the code can be encoded in

Encoder Compressed

Message
Original

Message

Compressed

Message

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 03, 2021

1263

real time at the time of compression.

There are number of real-worl applications. ZIP is the most commonly used technique for

compression which is based on Huffman Encoding[2]. Brotli Compression[3], the latest of

the lossless compression algorithms established last month by Google also uses Huffman

Coding. In addition, Let’s take one example of how Huffman code functions with fixed

duration and variable length

Let us consider the message

x= deer

In the above example we have only three characters d, e, r for encoding. If we do a fixed-

length encoding, we need at least two bits for each character [9]. Therefore, we need 8-bits to

represent. Suppose same example we are representing in Variable length encoding we decide

to use the following bits for variable

d=0, e=11, r=10 0111110

it takes only 6 bits which is less when compared to fixed-length encoding. The reason we

choose these values for d, e, r is because of the ambiguity faced by variable length encoding

while decoding the text. If you decode 0111110, we get the original message as deer.

Suppose we take d=0, e=01, r=00 now we get 0010100 if we decode this there is a

possibility of getting dd or r Therefore, proper care should be taken while working with

variable length coding[4][11].

Let us consider another example for constructing of Huffman tree as shown in fig 2.1

Huffman algorithm followsoptimal merge pattern that can generate own code[15]. The

character value will be added in increasing order.

message = MALAYALAM

Y M L A

1 2 2 4

Fig.3 Huffman Table

Distance calculation = Σfi+di

=1*2+2*2+2*2+4*2 = 18 bits

By using this tree, we can set a code for the character in a message

Table 1.Code Table

Character Count Code

M 2 01 2*2=4

A 4 11 2*4=8

L 2 10 2*2=4

Y 1 00 1*2=2

4*8=32 9 8 18

Now the size of the message is 18 bitsas shown on Table 1. with this message we need to

send the code table or tree for the decoding purpose.

Original message size 9*8-72 bits.

1.1 After encoding

 Now Message size is 18 bits (Total character + size of code) 4*8=32 bit + 8 bit =

40 bits

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 03, 2021

1264

Now encode message size is

message + code table =18+40=58 bits. Decoding will be done by using the code table in

Huffman code Algorithm.

Let us compare the various techniques as shown in Table 2 how it’s useful for data

compression in IoT, Machine Learning.

Table 2. comparison of various implementations using Huffman Coding

Paper Title Issues Advantages

Efficient data

Compression for IoT

Devices using

Huffman Coding

Based Technique [2]

The compression

process takes

considerable energy

and resources during

network data

transmission.

i) Graphs are used for compression for

finding the particular patterns and replace the

pattern with identifiers which are of variable

in length,

ii) The space requirements are minimized

by compressing the adjacency matrix that is

used in the graph.

An energy efficient IoT

data compression

approach for edge

machine learning [7]

i) In cloud it

needs high energy

consumption for data

transmission.

ii) Data to be

processed and replied

should be in a very

short time.

i) Edge computing is used to discharge the

workload directly from the cloud at the near

place of the source location.

ii) Prior to the transmission the data must be

compressed which consumes of the more

energy with the help of IOT devices.

iii) Using machine learning techniques the

transmitted data are rebuild at the edge node

on the cloud.

iv) The data collected using Wireless body

sensor Networks for the process of

compression.

IoT Data Compression:

Sensor-agnostic

Approach [3]

Bulk data storage in

the tiny sensors and

data transmission

cause more

 energy

consumption.

i) SensCompr methodology is used to

extract the embedded useful information

properties from the sensor parameter to

improve the compression gain while

optimizing the loss in information.

ii) It is implemented for the independent

sensor information.

Run Length Encoding:

Run-Length encoding (RLE) is a lossless compression methodology in which the sequence of

data elements can be used consecutively and can be stored as a single data value. This

methodology is applied in text, animations, and drawings.

1.2 Example :1

Before Encoding Total = 14 bits

After Applying RLE (Run Length Encoding)

X 0 3 Y 0 3 Z 0 4 C 0 4

X X X Y Y Y Z Z Z Z C C C C

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 03, 2021

1265

Total =12 bits

A, R, N, D are data value, A=03 is count of data value

The encoding of run length is particularly applied when there is the need for compressing

images and changing images. It lies behind many of the techniques used to extract

information from images. There may be potential drawbacks to this method:[8]

 This compression is only efficient with the files which contain lots of repetitive

data.

 Computer generated images are also not more suitable for the RLE encoding.

 The size of the consecutive characters increased from 3 to 4 characters, which may

disturb the efficiency of the compression of certain data.

Let us compare the various techniquesas shown in Table 3.1 how it’s useful for data

compression in IoT, Machine Learning

Table 3. comparison of various implementations using RLE

Paper Title Issues Advantages

Integration of IoT

Streaming Data with

Efficient

Indexing and Storage

Optimization [14]

Due to distribution of

these IoT devices,

integration and

management of the large

amount of data is the

new challenge.

i) Rectified by developing the

indexing technique with the run-length

encoding using time-series data

compression technique.

ii) It takes the time stamp from the

compressed data while the process of

decompression.

Differential Run-Length

Encryption in

Sensor Networks[6]

Energy is the main

problem in the sensor

networks while

communicating the data.

i) This issue is rectified by

introducing Differential run-length

encoding with the 3 layers of approach.

ii) This is used to divide the values

into subgroups and apply the

compression technique and then convert

this into binary form.

Performance Analysis of

Data

Main challenge for

maintaining

For this data compression is used by

identify and

Compression using

Lossless Run Length

Encoding[5]

the data is to transform,

store

and retrieve in a secure

way.

eliminate the statistical and redundant

input data

LZW Compression Technique:

Using a table-based lookup algorithm this technique transforms a file into a lesser file [16].

LZW compression is used to compress the text files, often.

Each input string of bits of the specified length takes a specific message the pattern itself

generates an input to a table as a smaller number[17]. As the input is read, every pattern read

before the shorter code is replaced effectively compresses the total input to something

smaller. The LZW algorithm does include the codes lookup table. Using this algorithm it

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 03, 2021

1266

processes the encoded input, the decoding programme that uncompressed the file will create

the table itself.

1.3 Example: ababbabcababba

i) Construct Small Table with the characters available in message as shown in Table 4

Table 4. Small Table

Index Entry

1 a

2 b

3 c

ii) Output Sequence Table:as shown in Table 5

Table 5. Output Table

Encoded Sequence 124523461

It is easy to implement, and has the potential for provide high throughput for hardware

deployment. It is the commonly used Unix file compression utility algorithm and also GIF

image format. Due to its simplicity and flexibility, LZW is the leading approach for general

purpose data compression. Let us compare the various techniques as shown in Table 4.3 how

it’s useful for data compression in IoT, Machine Learning

Table 6. Comparison of various implementations using LZW

Paper Title Issues Advantages

Edge computing by

using LZW

Algorithm P [10]

As this information rises day

by day, it becomes difficult

to effectively and efficiently

store and distribute the data

in less time.

Here it plays a vital role as a portal where

we use the LZW algorithm to compress

all-time data. Upon completion of the

process in the gateway block, the

compressed data is

sent to the data store where the data is

Encoded Output Index Entry

 1 a

 2 b

 3 c

1 4 ab

2 5 ba

4 6 abb

5 7 bab

2 8 bc

3 9 ca

4 10 aba

6 11 abba

1 - -

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 03, 2021

1267

permanently stored like a database

Lossless Data

Compression

Algorithm to Save

Energy in Wireless

Sensor

Network [13]

By transferring the

information, the battery life

of node is decreasing.

By developing an algorithm as a table-

based lookup structure/

In this a character string is a sequence of

two characters or more, provides the

unique token.to it

By using its key, the next character

should be identified the string which is

replaced by itsKey.

MultiPLZW: A

novel multiple

patterns matching

search in LZW-

compressed

The protection and privacy

need to be provided for the

encrypted or compressed data

without sacrificing

performance.

Alookup table, a mapping table and a

generalised suffix tree context tree will be

developed, in terms of time complexity,

the algorithm proposed is superior, and

spatial complexity

Data [12] maintains the same order as the best of

the current

algorithms.

Comparison between Three Compression Algorithms

In this section we are going to compare performance of three different algorithms, by using a

different set of characters as an input to determine the performance [4]. To analyse lossless

algorithm efficiency. We could consider some metrics of the output as follows.

i) Compression Ratio is the ratio between the size of the compressed file and the size of

the base file.

Compress Ratio = size after compression / size before compression

ii) Saving Percentage calculates the shrinkage of the source file as a percentage.

Saving Percentage = size before compression - size after compression / size before

compression *100

Let us consider 4 different types inputs for evaluate the effectiveness of these algorithms and

compare their results.

Table 6.Results of Huffman Code

Input file size

(bytes)

Output file size

(bytes)

Huffman Code

(Compression Ratio)

Huffman Code (Saving

Percentage)

104 45 43.27 60.7

2168 1131 52.17 47.8

5568 3046 54.17 45.29

192 102 58.13 46.8

677 133 48.9 80.3

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 03, 2021

1268

Table 7.Results of RLE

Input file size

(bytes)

Output file size

(bytes)

RLE (Compression Ratio)

RLE

(Saving Percentage)

162 122 75.3 24.69

418 232 55.5 44.4

1110 571 51.4 48.5

32 16 50 50

52 29 55.7 44

Table 8. Results of LZW

Input file size

(bytes)

Output file size

(bytes)

LZW

(Compression Ratio)

LZW

(Saving Percentage)

600 536 89 10.6

6440 4640 72 27.9

208 178 85.5 14.4

272 244 89.7 10.29

2168 1728 79 20.2

The above Table 6,7,8 shows the compression resuls and saving percentage of Huffman

code, RLE, LZW algorithm with different input files.The below Fig.4,5,6 shows graph

represntation of comaprision forHuffman code, RLE, LZW algorithm.

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 03, 2021

1269

Comparision of different file size (RLE)

8000

6000

4000

2000

0

1 2 3 4 5

Input file size (bytes)

LZW

Output file size (bytes)

LZW

Fig.4 Comparison chart for Huffman code

Fig.5. Comparison chart for RLE

Comparision of different file size
(Huffman Code)

10000

0

1 2 3 4 5

Input file size (bytes)

Output file size (bytes)

Huffman Code (Compression Ratio) Huffman Code

(Saving Percentage)

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 03, 2021

1270

Comparision of different file size (LZW)

10000

5000

0

1 2 3 4 5

Input file size (bytes)

LZW

Output file size (bytes)

LZW

Fig.6. Comparison chart for LZW

As per comparison of the different compression Algorithm the Huffman code produces better

result when we use different size of inputs, but in RLE produces better result when the input

size of the file is high and LZW also shows some variations in results of different input size.

2. CONCLUSION

In this paper we have presented the different technique for the lossless compression of the

text data. Different strategies were explored along with their algorithms and disadvantages. It

is shown that no algorithm provides promising results which can be used to compress the

data in realistic applications. Therefore, in the future, a lossless text compression algorithm

needs to be developed that can better compress text data and can also be used in various

functional applications where text data compression is required.

3. REFERENCES

[1]. Amarjit Kaur, Navdeep Singh and SethiHarinderpal Singh, ―A Review on Data

Compression Techniques‖, International Journal of Advanced Research in Computer

Science and Software Engineering Volume5, issue 1, January

- 2015, pp. 769-773.

[2]. Amlan Chatterjee, RushabhJitendrakumar Shah,Khondker S. Hasan,‖ Efficient Data

Compression for IoT Devices usingHuffman Coding Based Techniques‖,2018 IEEE

International Conference on Big Data (Big Data).

[3]. Arijit Ukil, Soma Bandyopadhyayand Arpan Pal,‖IoT Data Compression: Sensor-

agnostic Approach‖, 2015 Data Compression Conference.

[4]. Amandeep Singh Sidhu et al.:‖ Research Paper on Text Data CompressionAlgorithm

using Hybrid Approach‖,International Journal of Computer Science and Mobile

Computing, Vol. 3, Issue. 12, December 2014, pg.01 – 10.

[5]. Chetan R. Dudhagaraiet al.:‖ Performance Analysis of Data Compression

[6]. usingLossless Run Length Encoding‖,Oriental Journal of Computer Science and

Technology, Vol. 10, No. (3) 2017, Pg. 703-707.

[7]. ChiratheepChianphatthanakitet al.:‖ Differential Run-Length Encryption in Sensor

Networks‖, Sensors, July 2019.

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 03, 2021

1271

[8]. Joseph Azar, Abdallah Makhoul, Mahmoud Barhamgi, Raphael Couturier, ―An energy

efficient IoTdata compression approach for edge machine learning‖. Future Generation

Computer Systems, Elsevier,2019, 96, pp.168 - 175.

[9]. KussayNugamesh Mutteret al.:‖ Automatic Fingerprint Identification Using Gray

Hopfield Neural NetworkImproved by Run-Length EncodingFifth International

Conference on Computer Graphics, Imaging and Visualization, IEEE 2008.

[10]. LakshmiNarasimha, Devulapalli Venkata, ―Application ofHuffman DataCompression

Algorithm in HashingComputation‖, Western Kentucky University, Spring 2018.

[11]. K. Mohana Ravali Chowdary et al.:‖ Edge computing by using LZW Algorithm‖,

International Journal of Advanced Research, Idea and Innovations in Technology,

Volume 5, Issue 1,2019.

[12]. MontherAldwairi et al.:‖ MultiPLZW: A novel multiple pattern matching search in

LZW Compressed Data. Computer Communications .2019.

[13]. S.R. Kodituwakku et. al.,‖ Indian Journal of Computer Science and Engineering‖, Vol

1, issue 4, pp 416-425.

[14]. Tuong Ly Le, et al.:‖ Lossless Data Compression Algorithm to Save Energy in Wireless

[15]. SensorNetwork‖, 4th International Conference on Green Technology and Sustainable

Development(GTSD),2018.

[16]. Q.-T. Doan et al.:‖ Integration of IoT Streaming Data with Efficient Indexing and

Storage Optimization‖, IEEE Access, March 2020.

[17]. Yaqiong Liu, Yuzhuo Wen, Dingrong Yuan and Yuwei Cuan,‖ A Huffman Tree-

BasedAlgorithm for Clustering Documents‖, Springer International Publishing

Switzerland 2014,pp. 630–640.

[18]. Classification and prediction of social attributes By K-Nearest Neighbor Algorithm

with Socially-aware wireless networking-A study To cite this article: Sujatha

Krishanmoorthy et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 937 01205

[19]. Amin Salih Mohammed, Saravana Balaji B, Saleem Basha M S, Asha P N,

Venkatachalam K(2020),FCO — Fuzzy constraints applied Cluster Optimization

technique for Wireless AdHoc Networks,Computer Communications, Volume

154,Pages 501-508

