
International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 02, 2021

3580

Frequent Sub-Graph Mining Using Missing

Items

Dr.B.Senthil kumaran

Assistant Professor & Head PG & Research Department of computer science Jairams Arts

and Science College (affiliated to Bharathidasan University) karur.3

skumaran.gac16@gmail.com

ABSTRACT: One of the most sought after research area is graph mining and extracting

the hidden patterns from the graphs is a tedious task and that too unearthing meaningful

patterns is a challenging process and this paper focus on discovering useful patterns from

the graph data using a new algorithm named “Frequent Subgraph miningusing missing

items – FSMM algorithm” is employing some simple mechanisms to evade the

consumption of excess runtime and memory allocation. The graphs are initially converted

into textual transaction data where only the missing items are considered and this is

transformed into binary representations to discover the frequent sub-graphs. The results

are experimentally evaluated with state of the art existing algorithms to prove the

performance of the proposed algorithm.

Keyword: Graph mining – FIM – subgraph mining – data mining – binary representations

1. INTRODUCTION

The pioneer in graph mining domain is frequent sub-graph mining (FSM) and this area is not

new. The preeminent target of FSM is to find all frequent sub-graphs in a given graph dataset

whose event is over the limit check esteem given by the user to discover the sub-graphs.

The fundamental procedure behind FSM is to create candidates (sub-graph candidates) using

depth first or breadth first techniques and by employing the support consideration provided

by the user [4].

To the extent the FSM is viewed as two significant issues must be dealt with

proficiently

(I) Finding the entire candidate frequent sub-graphs without any redundancy.

(II) Eliminate the recurrence check of the created sub-graphs to reduce the time

complexity.

Here care must be taken to stay away from the generation of copy or superfluous candidates.

Backing tally checking requires redundant correlation of candidate sub-graphs with sub-

graphs in the information data and FSM can be considered as an expansion of Frequent

Itemset Mining (FIM) promoted with regards to ASM [4]. Numerous scientists proposed

answers for address the issues identified with FSM and descending conclusion property

related with itemset mining is generally taken on for candidate sub-graph age. This paper

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 02, 2021

3581

manages many best in class FSM based algorithms utilizing various strategies regarding time

complexity, memory complexity and search space related issues.

The frequent sub-graph mining is classified into two major categories, namely

1. Mining using collection of graphs and discover the frequent sub-graphs

2. Mining using single large graph and discover the frequent sub-graphs.

Let us consider a graph dataset Gd = { G1, G2, G3,…. GN} Where G1, G2, G3 are

collection of various graphs given in the dataset, the minimum support count threshold  (0

< 1). Then the support of M is

MinSup(M) = | (M) | / N

Where | (M) | is cardinality of (M) and N is total number of graph presents in the graph

dataset. Here M is frequent, if Sup(M) .The idea is simple if the superset is frequent, then

all the subsets are also frequent.

2. PROPOSED WORK

The proposed algorithm work is based on single large dataset and the sample dataset is shown

in the figure 1. Initially the graph is traversed from the top to bottom and the vertices, nodes

and edges are found to convert the graphical data into textual transaction data. The converted

transaction data is then represented with only the missing items in each row. The missing data

representation is converted into binary presentation and then the probable candidates are

formed using simple binary operation and user provided minimum support count threshold

value.

The procedure to convert the graph data to text transaction is shown in the following figure 3.

The initial process is to find the edges present in each and every node. Let us find the number

of edges present in the first node N1.

Figure 1: Single graph dataset

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 02, 2021

3582

Figure 2: Finding the edges

Figure 3: Pseudo code to convert graph to text

Here the number of edges is found to be 4 as shown in the figure 2. Similarly for all nodes the

edges are found.

PROCEDUREConvertGraphToText(Graph G)

Input: Single Graph data G

Output:Textual Labels with number of edges present in them

1. Load the single Graph dataset

2. Initially Scan the graph dataset to find the number of levels

3. Detect the vertexes present in the graph

4. Initialize edge =1 // to find the number of edges

5.  Vertex V in Graph G

 Discover the edges connected with the v

 Fetch the labels of the node

 Increment edge = edge + 1

 Store the labels and edge  RES

6. End For

7. Return RES

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 02, 2021

3583

Table 1: Converted graph to text

The graph that are converted into the textual data is shown in the table 1 and from this table

the unique items are found and after scrutinizing the minimum support count the missing item

representation is processed as shown in the following section. The procedure to find the

distinct items is shown in the following figure 4 and the pseudo code is showcased,

Figure 4: Pseudo code to find the distinct items

The support count is provided by the user is 4 and the distinct items are found to be {A, B ,

C, D, E, F, G, H, I, } where the item count of F, G, H, I are found to be 3 and as it is lower

than the user defined support, those items are pruned. The pruned transactional data

representation is shown in the following table 2 and from this table the missing items are

discovered.

NODE ITEMS EDGES NODE ITEMS EDGES

N1 E, F, G, H, I 4 N11 D, B 1

N2 F, E, A 2 N12 H, E, C 2

N3 A, F, B, C, D 4 N13 C, H, A, B, D 4

N4 B, A 1 N14 A, C 1

N5 C, A 1 N15 B, C 1

N6 D, A 1 N16 D, C 1

N7 G, C, B 2 N17 I, E, D 2

N8 B, G, A, C, D 4 N18 D, I, A, B, C 4

N9 A, B 1 N19 A, D 1

N10 C, B 1 N20 B, D 1

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 02, 2021

3584

Table 2: Pruned transactional data

Table 3: Missing item transactional data

Here the items that are missed in each node are found and represented as shown in the

following table 3.

Table 4: Binary representation of the missing items

NODE ITEMS NODE ITEMS

N1 E N11 D, B

N2 E, A N12 E, C

N3 A, B, C, D N13 C, A, B, D

N4 B, A N14 A, C

N5 C, A N15 B, C

N6 D, A N16 D, C

N7 C, B N17 E, D

N8 B, A, C, D N18 D, A, B, C

N9 A, B N19 A, D

N10 C, B N20 B, D

NODE ITEMS NODE ITEMS

N1 A,B,C,D N11 A,C,E

N2 B,C,D N12 A,B,D

N3 E N13 E

N4 C,D,E N14 B,D,E

N5 B,D,E N15 A,D,E

N6 B,C,E N16 A,B,E

N7 A,D,E N17 A,B,C

N8 E N18 E

N9 C,D,E N19 B,C,E

N10 A,D,E N20 A, C,E

NODE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1

B 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0

C 1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1

D 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0

E 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 02, 2021

3585

Figure 5: Pseudo code to represent the missing item dataset in binary format

The table 3 is considered and if the item is present in the node then it is marked by one and

else marked by zero. The pseudo code to perform this task is shown in the figure 5.

The frequent graphs are found by computing the probable candidate and lets us start from the

2 itemset value A and B.

A = 10000010011100111001

B = 11001100000101011010 |OR

 AB = 11 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1

Now count the number of zeroes and from the result {AB}=11001110011101111011 where

the number of zero is 6 and the user defined support provided is 4. The count of AB is higher

than the minimum support and this graph is found to be frequent. Now the next level 3-

itemset is found using this {AB} | {C}

 AB = 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1

 C = 1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 | OR

ABC = 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1

The number of zeroes is found to be 3 and it is lesser than the minimum support count and

hence it is infrequent and the next level 4-itemset is ignored. The final frequent sub-graph is

shown in the following table 5.

PROCEDURE BinaryValue(Missing Item M)

Input: Missing Item M

Output:Bit vector representation of data

1. Load missing item Data set M and scan it.

2.  Row RoM begin

3.  Item It Ro begin

4. If [It present in Ro] begin

5. Mark as “1” in out

6. Else

7. Mark as “0” in out

8. Close IF

9. Close For

10. Close For

11. Return out

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 02, 2021

3586

Table 5: Final result

PROPOSED ALGORITHM

ALGORITHM FSMM

Input: Graph Database G , min_sup

Output:Frequent Items

1. Load the graph dataset

2. Convert graph to test TextTable

3. Load the transaction table Texttable

4. Find the missing Value  Tm

5. Bin=BinaryValue(dataset Tm)

6. Find the level wise calculation

7. Count the number of zeroes

8. If [Count >= min_sup]

9. Store the itemset in RES

10. Calculate the next level itemset

11. Else

12. Prune the Itemset

13. Return RES

Figure 6: Pseudo code of the proposed algorithm FSMM

3. EXPERIMENTAL EVALUATION

The proposed FSMM algorithm is executed on a system comprising of 2.66 GHz I7 processor

machine with a 4 GB memory running on Microsoft 10 ultimate operating system. The

algorithm is written in java based SPMF data mining toolkit. The proposed algorithm was

compared with the existing algorithms like FSG [1], GSPAN [2], GASTON [3] and the

results are showcased to prove the effective working of the proposed algorithm.

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 02, 2021

3587

Kuramochi and Karypis [1] proposed the FSG algorithms for mining all frequent sub-graphs

from graph datasets, using a level-wise approach based on the Apriori concepts and this

algorithm was the first one compared with the proposed FSMM.

The author Yan and Han [2] proposed GSPAN, which employed depth- first search, based on

a pattern growth principle similar to the FP-growth algorithm and here the candidate

generation is evaded but this requires lot of memory.

The author Nijssen et al. proposed a more efficient frequent sub-graph mining tool, called

Gaston, which discovers the frequent substructures in a number of phases of increasing

complexity [3].

The synthetic data generator first creates a set of candidate graphs (the total number is

controlled by L) with user specified size (I). The parameters used in the synthetic graph

generator are shown in the table 6.

Table 6: Parameter used in synthetic dataset

The dataset generated is shown in the following table and three datasets are generated and

employed for experimental comparison with respect to the runtime and memory

consumption.

Table 2: Pruned transactional data

X

The proposed FSMM algorithm along with the other existing algorithms is executed on the

synthetic datasets shown in the table 7. The results obtained after execution with respect to

runtime consumption is noted as shown in the table 8.

RUNTIME (mSEC)

Dataset - D15kT30L200I11V4E4

Algorithm User defined Min_Sup values

Parameter

s

Description of parameter

D Total number of graph

L Total number of probable frequent sub-graph present

T Number of Edges

V Label count

I Edge size

E Edge label count

Dataset generated Number of

Sequences

Avg.

edges

Potential

freq

patterns

D15kT30L200I11V4E4 10000 35 250

D25kT40L350I16V4E4 20000 45 375

D120kT50L500I20V4E4 100000 55 550

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 02, 2021

3588

10 100 1000 2000 2500

FSG 1244 947 831 787 659

GSPAN 1219 894 726 678 646

GASTON 1079 859 717 626 538

FSMM 978 722 665 556 437

Table 8: Run time comparison on D10kT30L200I11V4E4 (Small) dataset

The experimental results showcased in the table 8 clearly indicate that the proposed FSMM

algorithm performs reasonably well small synthetic dataset. The GASTON algorithm almost

matched the performance of the FSMM when a large support count is provided but the other

two algorithms performed quite badly and took quite a lot of time to execute.

Figure 7: Graph related to runtime comparison

The next comparison is carried out with memory footprint and the following table 9

showcases the comparison of memory consumption.

MEMORY USAGE (MB)

Dataset - D15kT30L200I11V4E4

Algorithm User defined Min_Sup value

10 100 1000 2000 2500

FSG 323 109 78 58 35

GSPAN 276 93 66` 42 29

GASTON 224 79 57 37 27

FSMM 168 66 45 29 21

Table 9: Memory consumption comparison

The table 9 clearly demonstrates that the proposed FSMM algorithm outscores the other three

algorithms by a good margin with respect to the memory consumption. When the minimum

International Journal of Aquatic Science

ISSN: 2008-8019

Vol 12, Issue 02, 2021

3589

support value is reduced below 5, FSG suffered with out of memory error and when the

minimum support value is increased above 3000 almost all the algorithms performed equally

well.

Figure 8: Graph related to memory comsumption

4. CONCLUSION

The proposed algorithm FSMM is showcased in this paper and from the experimental results

it is quite clear that the FSMM outperformed the other algorithms by a large magnitude

regarding runtime and memory consumption. The proposed method clearly saved lot of time

and memory when executed on large graph dataset and proved to be an asset to the research

communities.

5. REFERENCES

[1] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc. International

Conference on Data Mining’01, 2001.

[2] Yan, X. and Han, J.W. 2002. gSpan: Graph-based Substructure pattern mining, In

Proceedings of International Conference on Data Mining, 721–724.

[3] S. Nijssen and J.N. Kok. The gaston tool for frequent subgraph mining. Electronic

Notes in Theoretical Computer Science, 127:77-87, 2005.

[4] Chen, M.S., Han,J.andYu,P.S. 1996 Data mining – An overview from database

perspective, IEEE Transaction on knowledge and data engineering 8 , 866-883

[5] http://cygnus.uta.edu/subdue/databases/index.html

[6] http://citeseer.ist.psu.edu/oai.html

[7] http://vlsicad.cs.ucla.edu/cheese/ispd98.html

http://cygnus.uta.edu/subdue/databases/index.html
http://citeseer.ist.psu.edu/oai.html
http://vlsicad.cs.ucla.edu/cheese/ispd98.html

