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ABSTRACT: One of the most sought after research area is graph mining and extracting 

the hidden patterns from the graphs is a tedious task and that too unearthing meaningful 

patterns is a challenging process and this paper focus on discovering useful patterns from 

the graph data using a new algorithm named “Frequent Subgraph miningusing missing 

items – FSMM algorithm” is employing some simple mechanisms to evade the 

consumption of excess runtime and memory allocation. The graphs are initially converted 

into textual transaction data where only the missing items are considered and this is 

transformed into binary representations to discover the frequent sub-graphs. The results 

are experimentally evaluated with state of the art existing algorithms to prove the 

performance of the proposed algorithm. 
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1. INTRODUCTION 

 

The pioneer in graph mining domain is frequent sub-graph mining (FSM) and this area is not 

new. The preeminent target of FSM is to find all frequent sub-graphs in a given graph dataset 

whose event is over the limit check esteem given by the user to discover the sub-graphs.  

 

The fundamental procedure behind FSM is to create candidates (sub-graph candidates) using 

depth first or breadth first techniques and by employing the support consideration provided 

by the user [4]. 

To the extent the FSM is viewed as two significant issues must be dealt with 

proficiently  

(I) Finding the entire candidate frequent sub-graphs without any redundancy. 

(II) Eliminate the recurrence check of the created sub-graphs to reduce the time 

complexity.  

 

Here care must be taken to stay away from the generation of copy or superfluous candidates. 

Backing tally checking requires redundant correlation of candidate sub-graphs with sub-

graphs in the information data and FSM can be considered as an expansion of Frequent 

Itemset Mining (FIM) promoted with regards to ASM [4]. Numerous scientists proposed 

answers for address the issues identified with FSM and descending conclusion property 

related with itemset mining is generally taken on for candidate sub-graph age. This paper 
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manages many best in class FSM based algorithms utilizing various strategies regarding time 

complexity, memory complexity and search space related issues. 

 

The frequent sub-graph mining is classified into two major categories, namely 

1. Mining using collection of graphs and discover the frequent sub-graphs 

2. Mining using single large graph and discover the frequent sub-graphs. 

Let us consider a graph dataset Gd = { G1, G2, G3,…. GN} Where G1, G2, G3 are 

collection of various graphs given in the dataset, the minimum support count threshold  (0 

< 1). Then the support of M is  

MinSup(M) = | (M) | / N 

Where | (M) | is cardinality of (M) and N is total  number of graph presents in the graph 

dataset. Here M is frequent, if Sup(M) .The idea is simple if the superset is frequent, then 

all the subsets are also frequent.  

 

2. PROPOSED WORK 

 

The proposed algorithm work is based on single large dataset and the sample dataset is shown 

in the figure 1. Initially the graph is traversed from the top to bottom and the vertices, nodes 

and edges are found to convert the graphical data into textual transaction data. The converted 

transaction data is then represented with only the missing items in each row. The missing data 

representation is converted into binary presentation and then the probable candidates are 

formed using simple binary operation and user provided minimum support count threshold 

value. 

The procedure to convert the graph data to text transaction is shown in the following figure 3.  

The initial process is to find the edges present in each and every node. Let us find the number 

of edges present in the first node N1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Single graph dataset 
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Figure 2: Finding the edges 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Pseudo code to convert graph to text 

 

Here the number of edges is found to be 4 as shown in the figure 2. Similarly for all nodes the 

edges are found. 

 

 

PROCEDUREConvertGraphToText( Graph G) 

Input: Single Graph data G 

Output:Textual Labels with number of edges present in them 

1. Load the single Graph dataset 

2. Initially Scan the graph dataset to find the number of levels  

3. Detect the vertexes present in the graph 

4. Initialize edge =1 // to find the number of edges 

5.  Vertex  V in  Graph G  

       Discover the edges connected with the v 

       Fetch the labels of the node  

       Increment edge = edge + 1 

       Store the labels  and edge  RES 

6. End For 

7. Return RES 

 

 



International Journal of Aquatic Science  

ISSN: 2008-8019 

Vol 12, Issue 02, 2021 
 

3583 

 

 

Table 1: Converted graph to text 

 

 

The graph that are converted into the textual data is shown in the table 1 and from this table 

the unique items are found and after scrutinizing the minimum support count the missing item 

representation is processed as shown in the following section. The procedure to find the 

distinct items is shown in the following figure 4 and the pseudo code is showcased, 

 

 

 

 

 

 

 

 

 

Figure 4: Pseudo code to find the distinct items 

 

The support count is provided by the user is 4 and the distinct items are found to be {A, B , 

C, D, E, F, G, H, I, } where the item count of F, G, H, I are found to be 3 and as it is lower 

than the user defined support, those items are pruned. The pruned transactional data 

representation is shown in the following table 2 and from this table the missing items are 

discovered. 

 

 

 

 

 

NODE  ITEMS EDGES NODE ITEMS  EDGES 

N1 E, F, G, H, I 4 N11 D, B 1 

N2 F, E, A 2 N12 H, E, C 2 

N3 A, F, B, C, D 4 N13 C, H, A, B, D 4 

N4 B, A 1 N14 A, C 1 

N5 C, A 1 N15 B, C  1 

N6 D, A 1 N16 D, C 1 

N7 G, C, B 2 N17 I, E, D 2 

N8 B, G, A, C, D 4 N18 D, I, A, B, C 4 

N9 A, B 1 N19 A, D 1 

N10 C, B 1 N20 B, D 1 
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Table 2: Pruned transactional data 

 

 

Table 3: Missing item transactional data 

 

 

Here the items that are missed in each node are found and represented as shown in the 

following table 3. 

 

Table 4: Binary representation of the missing items 

 

 

 

 

 

 

 

NODE   ITEMS NODE ITEMS 

N1 E N11 D, B 

N2 E, A N12  E, C 

N3 A, B, C, D N13 C,  A, B, D 

N4 B, A N14 A, C 

N5 C, A N15 B, C  

N6 D, A N16 D, C 

N7 C, B N17 E, D 

N8 B,  A, C, D N18 D, A, B, C 

N9 A, B N19 A, D 

N10 C, B N20 B, D 

NODE   ITEMS NODE ITEMS 

N1 A,B,C,D N11 A,C,E 

N2  B,C,D N12  A,B,D 

N3 E N13 E 

N4 C,D,E N14 B,D,E 

N5 B,D,E N15 A,D,E 

N6 B,C,E N16 A,B,E 

N7 A,D,E N17 A,B,C 

N8 E N18 E 

N9 C,D,E N19 B,C,E 

N10 A,D,E N20 A, C,E 

NODE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

A 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 

B 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 

C 1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 

D 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 

E 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1  1 1 1 
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Figure 5: Pseudo code to represent the missing item dataset in binary format 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The table 3 is considered and if the item is present in the node then it is marked by one and 

else marked by zero. The pseudo code to perform this task is shown in the figure 5. 

 

The frequent graphs are found by computing the probable candidate and lets us start from the 

2 itemset value A and B. 

A = 10000010011100111001 

B = 11001100000101011010 |OR 

       AB  =  11 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 

 

 

Now count the number of zeroes and from the result {AB}=11001110011101111011 where 

the number of zero is 6 and the user defined support provided is 4. The count of AB is higher 

than the minimum support and this graph is found to be frequent. Now the next level 3-

itemset is found using this {AB} | {C} 

  AB  =  1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 

  C   =   1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 | OR 

ABC = 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1  

 

 

The number of zeroes is found to be 3 and it is lesser than the minimum support count and 

hence it is infrequent and the next level 4-itemset is ignored. The final frequent sub-graph is 

shown in the following table 5. 

 

 

 

 

PROCEDURE BinaryValue(Missing Item M) 

Input: Missing Item M 

Output:Bit vector representation of data 

1. Load missing item Data set M and scan it. 

2.  Row RoM  begin 

3.  Item It  Ro  begin 

4. If [ It present in Ro] begin 

5. Mark as “1” in out 

6. Else  

7. Mark as “0” in out 

8. Close IF 

9. Close For 

10. Close For 

11. Return out 
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Table 5: Final result 

PROPOSED ALGORITHM 

 

ALGORITHM FSMM 

Input: Graph Database G , min_sup 

Output:Frequent Items 

1. Load the graph dataset 

2. Convert graph to test TextTable 

3. Load the transaction table Texttable 

4. Find the missing Value  Tm 

5. Bin=BinaryValue(dataset Tm) 

6. Find the level wise calculation 

7. Count the number of zeroes 

8. If [Count >= min_sup] 

9. Store the itemset in RES 

10. Calculate the next level itemset 

11. Else 

12. Prune the Itemset 

13. Return RES 

 

Figure 6: Pseudo code of the proposed algorithm FSMM 

 

3. EXPERIMENTAL EVALUATION 

 

The proposed FSMM algorithm is executed on a system comprising of 2.66 GHz I7 processor 

machine with a 4 GB memory running on Microsoft 10 ultimate operating system. The 

algorithm is written in java based SPMF data mining toolkit. The proposed algorithm was 

compared with the existing algorithms like FSG [1], GSPAN [2], GASTON [3] and the 

results are showcased to prove the effective working of the proposed algorithm. 
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Kuramochi and Karypis [1] proposed the FSG algorithms for mining all frequent sub-graphs 

from graph datasets, using a level-wise approach based on the Apriori concepts and this 

algorithm was the first one compared with the proposed FSMM.  

 

The author Yan and Han [2] proposed GSPAN, which employed depth- first search, based on 

a pattern growth principle similar to the FP-growth algorithm and here the candidate 

generation is evaded but this requires lot of memory. 

 

The author Nijssen et al. proposed a more efficient frequent sub-graph mining tool, called 

Gaston, which discovers the frequent substructures in a number of phases of increasing 

complexity [3]. 

 

The synthetic data generator first creates a set of candidate graphs (the total number is 

controlled by L) with user specified size (I). The parameters used in the synthetic graph 

generator are shown in the table 6. 

 

Table 6: Parameter used in synthetic dataset 

 

 

 

 

 

 

 

 

 

 

The dataset generated is shown in the following table and three datasets are generated and 

employed for experimental comparison with respect to the runtime and memory 

consumption. 

Table 2: Pruned transactional data 

 

 

 

X 

 

 

 

 

The proposed FSMM algorithm along with the other existing algorithms is executed on the 

synthetic datasets shown in the table 7. The results obtained after execution with respect to 

runtime consumption is noted as shown in the table 8. 

 

RUNTIME (mSEC) 

Dataset - D15kT30L200I11V4E4 

Algorithm User defined Min_Sup values 

Parameter

s 

Description of parameter 

D Total number of graph 

L Total number of probable frequent sub-graph present 

T Number of Edges 

V Label count 

I Edge size 

E Edge label count 

Dataset generated Number of 

Sequences 

Avg.  

edges 

Potential 

freq 

patterns 

D15kT30L200I11V4E4 10000 35 250 

D25kT40L350I16V4E4 20000 45 375 

D120kT50L500I20V4E4 100000 55 550 
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10 100 1000 2000 2500 

FSG 1244 947 831 787 659 

GSPAN 1219 894 726 678 646 

GASTON 1079 859 717 626 538 

FSMM 978 722 665 556 437 

Table 8: Run time comparison on D10kT30L200I11V4E4 (Small) dataset 

 

The experimental results showcased in the table 8 clearly indicate that the proposed FSMM 

algorithm performs reasonably well small synthetic dataset. The GASTON algorithm almost 

matched the performance of the FSMM when a large support count is provided but the other 

two algorithms performed quite badly and took quite a lot of time to execute. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Graph related to runtime comparison 

 

The next comparison is carried out with memory footprint and the following table 9 

showcases the comparison of memory consumption. 

 

MEMORY USAGE (MB) 

Dataset - D15kT30L200I11V4E4 

Algorithm User defined Min_Sup value 

10 100 1000 2000 2500 

FSG 323 109 78 58 35 

GSPAN 276 93 66` 42 29 

GASTON 224 79 57 37 27 

FSMM 168 66 45 29 21 

Table 9: Memory consumption comparison 

 

The table 9 clearly demonstrates that the proposed FSMM algorithm outscores the other three 

algorithms by a good margin with respect to the memory consumption. When the minimum 
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support value is reduced below 5, FSG suffered with out of memory error and when the 

minimum support value is increased above 3000 almost all the algorithms performed equally 

well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Graph related to memory comsumption 

 

4. CONCLUSION 

 

The proposed algorithm FSMM is showcased in this paper and from the experimental results 

it is quite clear that the FSMM outperformed the other algorithms by a large magnitude 

regarding runtime and memory consumption. The proposed method clearly saved lot of time 

and memory when executed on large graph dataset and proved to be an asset to the research 

communities.  
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