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Abstract:  One of the important challenges in the design of LQR for real time applications 

is the optimal choice state and input weighting matrices (Q and R), which play a vital role 

in determining the performance and optimality of the controller. Commonly, trial and 

error approach is employed for selecting the weighting matrices, which not only burdens 

the design but also results in non-optimal response. Hence, to choose the elements of Q 

and R matrices optimally, Adaptive Dynamic Programming (ADP) algorithm is used for 

selecting the most suitable Q and R matrices by iteration which reduces the performance 

index of the system to be considered. However, stability is only a bare minimum 

requirement in a system design. Ensuring optimality guarantees the stability of the 

nonlinear system. Dynamic programming is a very useful tool in solving optimization and 

optimal control problems by employing the principle of optimality. There are several 

spectrums about the dynamic programming. One can consider discrete-time systems or 

continuous-time systems, linear systems or nonlinear systems, time-invariant systems or 

time-varying systems, deterministic systems or stochastic systems. The inverted pendulum 

is a standard benchmark control problem and for the control of which numerous control 

algorithms have evolved over the ages. The main objective of this project is to design a 

robust linear quadratic regulator (RLQR) for nonlinear system using adaptive dynamic 

programming and to propose an optimal tracking control approach based on adaptive 

dynamic programming (ADP) algorithm in order to solve the linear quadratic regulation 

problems for nonlinear systems in an online fashion. 

 

Keywords—LQR, weighting matrices, Adaptive Dynamic Programming, nonlinear system, 

principal of optimality, online fashion 

 

1. INTRODUCTION 
 

In real time all the systems are affected by various uncertainties due to modeling error, 

external disturbance and parameter variations. Controlling such a dynamical system is 

difficult and there arise the need for robust controllers. These controllers will achieve the 

desired performance of system despite uncertainties. 

The inverted pendulum is a standard benchmark control problem and for the control of 

which numerous control algorithms have evolved over the ages. Linear quadratic regulator 

(LQR) is one among the control algorithm. One of the challenging problems in the design of 

LQR is the choice of Q and R matrices. Conventionally, the weights of a LQR controller are 

chosen based on a trial and error approach to determine the optimum state feedback controller 
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gains. However, it is often time consuming and tedious to tune the controller gains via a trial 

and error method. To avoid these problems, an iterative approach for the selection of Q and R 

matrices has been introduced in this paper. This iterative approach leads to adaptive dynamic 

programming (ADP) where the iteration is done to minimize the performance index or cost 

function by selecting the optimal Q and R matrices for the given system. 

 Derong Liu and Qinglai Wei [1] developed a new Policy Iteration Adaptive   Dynamic 

Programming Algorithm for Discrete-Time Nonlinear Systems for solving the infinite horizon 

optimal control problem of nonlinear systems. Their idea is to use an iterative ADP technique 

to obtain the iterative control law, which optimizes the iterative performance index function. 

Qingqing Xie, B. Luo, and F. Tan [2] presented a new Discrete-Time LQR Optimal 

Tracking Control Problems Using Approximate Dynamic Programming Algorithm with 

Disturbance. The iterative ADP algorithm via Heuristic Dynamic Programming (HDP) 

technique is introduced to solve the value function of the controlled system. To verify its 

robustness, disturbance is added to the controlled system. 

 

Yang Liu, Yanhong Luo and Huaguang Zhang [3]  proposed an Adaptive Dynamic 

Programming for Discrete-time LQR Optimal Tracking Control Problems with Unknown 

Dynamics. An optimal tracking control approach based on adaptive dynamic programming 

(ADP) algorithm is proposed to solve the linear quadratic regulation (LQR) problems for 

unknown discrete-time systems in an online fashion. It is shown that the proposed ADP 

algorithm solves the LQR without requiring any knowledge of the system dynamics. The 

simulation results show the convergence and effectiveness of the proposed control scheme. 

Vinodh Kumar E and Jovitha Jerome [4] developed a Robust LQR Controller Design for 

Stabilizing and Trajectory Tracking of Inverted Pendulum. It describes the method for 

stabilizing and trajectory tracking of Self Erecting Single Inverted Pendulum (SESIP) using 

Linear Quadratic Regulator (LQR). A robust LQR is proposed in this paper not only to 

stabilize the pendulum in upright position but also to make the cart system to track the given 

reference signal even in the presence of disturbance. An optimal LQR controller with well-

tuned weighting matrices is implemented to stabilize the pendulum in the vertical position. 

As a future work, to further reduce the oscillation amplitude and frequency, friction 

compensation schemes can be incorporated in the controller strategy. 

 

Chaiporn Wongsathan and Chanapoom Sirima [5] developed an Application of GA to 

Design LQR Controller for an Inverted Pendulum System. Genetic Algorithm (GA) is 

applied to design weighting matrices in Linear Quadratic Regulator (LQR) for an Inverted 

Pendulum System (IPS). Feedback gain settings of the system are obtained by minimizing the 

performance index using GA to optimize the weight matrices of LQR. In the future, the 

design idea can be extended to the control method such as fuzzy logic controller, neuro-fuzzy 

controller for the non-linear model of IPS which needs to be studied ulterior. 

 

System description and modeling 

A. Inverted Pendulum Sysyem 

The inverted pendulum is a nonlinear, unstable, under actuated system. The system is 

under actuated as it has two degrees of motion with a single input and such systems are 

difficult to control. The output is the linear motion of the cart and the angular motion of the 

pendulum. Because of this nature of the system, they are selected for studying various 

modern control problems. The schematic representation of the inverted pendulum on a 

moving cart system is shown in Fig. 1. 
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Fig. 1. Cart-Inverted Pendulum System 

 

 The cart-inverted pendulum system consists of a pendulum of mass and length 

attached to the cart of mass and the cart in turn is attached to a motor that drives the cart 

along the horizontal track by means of gear arrangement. The mass of the cart is given by the 

sum of the cart mass and the mass of the additional weights that are added to balance the 

weight of the pendulum attached to the cart. The movement of the cart is constrained only in 

horizontal direction whereas the pendulum can rotate in the x-y plane. Hence the system can 

be represented by the two state variables namely, the horizontal displacement of the cart and 

the angular displacement of the pendulum. The coulomb‟s frictional force exerted by the cart 

pinion arrangement and the force on the cart due to pendulum‟s action are assumed to be 

negligible for the modeling of the system. The Cartesian co-ordinates of the cart-inverted 

pendulum is represented as shown in Fig. 2. The global frames are fixed as     and the 

position of the pendulum with respect to the global frame is given by      corresponding 

to the   and   global reference frame. The mathematical model of the setup shown in Fig. 2 

is obtained by applying the Euler-Lagrangian energy equation. 

 
Fig. 2. Cartesian co-ordinates of Cart-Inverted Pendulum System 

 

B.   Euler-Lagrangian Formulation 

The Lagrangian formulation is based on the differentiation of the energy terms with respect 

to the system‟s state variables and time. When the complexity of the system increases, the 

Lagrangian method becomes relatively simpler to use. Lagrangian method is based on the 

following two generalized equations: one for the linear motions and the other for the 

rotational motions. Because of the effectiveness, the Lagrangian method is used for modeling 

the complex systems which have translational as well as rotational motions. The Lagrangian 

is defined as 

 

                                                              (1) 

 

where   is the lagrangian,   is the total kinetic energy of the system and   is the total 

potential energy of the system. 
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The Euler-Lagrangian for the cart-inverted pendulum system is given by 

 

                         
 

  

  

  ̇ 
 

  

   
                              (2) 

 

                         
 

  

  

  ̇
 

  

  
                                (3) 

 

where    and   are the force applied on the coordinate    and   respectively. On 

substitution, the lagrangian is thus expressed as shown below 
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C. Model Linearization 

The nonlinear model is linearized around the equilibrium point i.e. upright position such 

that     ( )        ( )   . The linearized model is written in the state space form as 
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The cart-pendulum system parameters that are used to obtain the state space model are shown 

in Table.1. 

 

Table.1 System Parameters of Cart-Inverted Pendulum system 

Parameter Description Value 

   Mass of the cart 1.0731    

   Mass of the pendulum 0.127   

   
Length of the pendulum from 

center to center of gravity 
0.1778   

   Moment of inertia of the pendulum 1.2           

 Acceleration due to gravity 9.81        

   
Viscous damping co-efficient at 

pendulum axis 
0.0024             

    
Viscous damping co-efficient at 

motor pinion 
5.4             

 

By substituting the parameters given in the Table. 1 in A and B matrices, the state space 

model of the system is obtained as shown below, 

 

[
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D. Stability of Cart Pendulum System 

The cart-pendulum system is an unstable system in open loop and this can be verified with 

the pole zero plot for the obtained state space model. The pole zero plot for the system is 

shown in Fig. 3. As seen from the pole zero map, the poles of the obtained state space model 

are located at 0, -5.6041, -0.142, 5.5651. This implies that the system inherently is not stable 

and thus needs a proper controller to be designed that can bring all the closed loop poles to 

the left half of the s-plane making the system stable. The need for proper controller design is 

thus clearly visible and that system would be unstable in open loop. 

Hence the design of controller gain is significance for such systems. If the controller 

designed works well for the cart-pendulum system, then they can be implemented in a wide 
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variety of real time applications. The controller designed for such systems find their 

application in aerospace systems which are much more complex and unstable. Also, they can 

be used to control similar under actuated system as well. 

 

 
Fig. 3. Pole zero map of the cart-pendulum system model 

 

Design of Robust LQR Control using ADP 

       The basic idea of Linear Quadratic Regulator (LQR) controller is to solve the weighting 

matrices selection problem. One of the important challenges in the design of LQR for real 

time applications is the optimal choice of state matrix (Q) and input weighting matrix (R), 

which play a vital role in determining the performance and optimality of the controller. 

Commonly, trial and error approach is employed for selecting the weighting matrices, which 

is not only tedious but also time consuming and results in non-optimal response. Hence, to 

choose the elements of Q and R matrices optimally, an adaptive dynamic programming 

(ADP) algorithm is formulated and applied for minimizing the performance index or the cost 

function. Moreover, by minimizing a quadratic cost function which consists of two penalty 

matrices (Q and R), LQR yields an optimal response between the control input and speed of 

response. Hence, the LQR techniques have been successfully applied to a large number of 

complex systems such as vibration control system, fuel cell system and aircraft. 

      In order to obtain the Q and R matrices optimally, iteration is performed using adaptive 

dynamic programming. The value of Q and R for which the cost function tends to be 

minimum is considered to be the optimal values of the matrices Q and R. The block diagram 

for the LQR controller using adaptive dynamic programming is shown in Fig. 4. 

 

 
Fig. 4. Block diagram of LQR controller for cart pendulum system using ADP 
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Consider a linear time invariant system (LTI), 
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      where  ( ) is the state vector and  ( ) is the input vector, determine the matrix   
     such that the static, full state feedback control law, 
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satisfies the following criteria, 

a) the closed-loop system is asymptotically stable 

b) the quadratic performance functional and the cost function           
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   (12) 

 is minimized. Q is a nonnegative definite matrix that penalizes the departure of 

system states from the equilibrium, and R is a positive definite matrix that penalizes the 

control input.  

 

The following are the steps to design LQR control where Q and R values are selected by 

iteration method: 

 

Step: 1: Solve the matrix Algebraic Riccati Equation (ARE) 

                                                                                                                                        
                     (13) 

 

Step: 2: Determine the optimal state   ( ) from 
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Step: 3: Obtain the optimal control   ( ) from 

   

             ( )           ( )                           (15) 

 

Step: 4: Obtain the optimal performance index from 
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Step: 5: Iterate the Q and R values from 0 to n, where n represents the number of   iteration 

to be performed till the performance index or cost function gets minimized. 

 

      The weighting matrices Q and R are important components of an LQR optimization 

process. The composition of Q and R elements has great influences on system performance. 

The designer need not to worry about the choice of Q and R values as it can be resolved using 

iteration method. The optimal control problem, 
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and the infinite horizon quadratic cost function to be minimized is expressed as 

 

 ( (  )   )  ∫ (
  ( )    ( )
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with         and ( 
 

   ) detectable. 

 

       The solution of this optimal control problem, determined by Bellman‟s optimality 

principle is given by 

 

                       ( )     ( )                               (19)  
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      where the matrix P is the unique positive definite solution of the Algebraic Riccati 

Equation (ARE), 

 

                                         (21) 

 

Under the detectability condition for ( 
 

   ), the unique positive semi-definite solution of the 

ARE determines a stabilizing closed loop controller given by equation (20). It is important to 

note that, in order to solve equation (21), complete knowledge of the model of the system is 

needed i.e., both the system matrix A and control input matrix B must be known. 

 

2. RESULTS AND DISCUSSIONS  

 

        This section focuses on the selection of weighting matrices Q and R by an iterative 

approach using adaptive dynamic programming (ADP) which makes the design of LQR to be 

robust. The value of Q and R for which the cost function defined becomes minimum, is 

chosen as the optimum solution to the problem. This method replaces the trail and error 

method where Q and R matrices are selected by the experience of the user. The following 

sections illustrate the results obtained using MATLAB platform. 

 

 

E. Open Loop Response of the Inverted Pendulum System 

 

The fig.5 shows the open loop response of the inverted pendulum. From the response, it 

is clear that the system is unstable since the output is unbounded. 
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Fig.5. Step response of the open-loop system 

 

F. Closed Loop Response of the Inverted Pendulum System 

 The fig.6 shows the pole zero plot of the closed loop system which is obtained using 

LQR control. It can be seen from the fig.6 that the poles are located at the left-half of the 

plane. This indicates that the system become stable using LQR control. 

 
Fig.6. Pole-Zero map of the closed-loop system 

 

 The fig.7 shows the closed loop response of the inverted pendulum system and it can 

be seen from the figure that both the cart position (    ) and pendulum angle(  
         ) attain their desired value. 
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Fig.7. Step response of the closed-loop system 

 

G. Response of Inverted Pendulum System using LQR Control 

 

 
Fig.8. Step response with LQR control 

 

It is shown from the fig.8 that the Q and R values are given (       and    ). 

The cart position and pendulum angle settle to its desired value but settling time is more (4 

seconds) and rise time is less (0.5 seconds). 
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Fig.9. Controller output using LQR control 

 

 The fig.9 shows the controller output obtained using LQR control and it implies that 

the response is doesn‟t settles properly. 

 

H. Response of the Inverted Pendulum System with LQR Control using ADP 

 The step response of the inverted pendulum system with LQR control using ADP is 

shown in fig.10 where the Q and R values are obtained by iteration. Here the rise time is 

lesser (0.25 seconds) than the step response obtained using LQR control. Also the settling 

time (0.7 seconds) of both cart position and pendulum angle with LQR control using ADP is 

lesser than the settling time of LQR control. 

 From this, the most optimum values of Q and R are chosen iteratively and also the 

response is improved in this method when compared with the response of conventional LQR 

control. The fig.11 shows the controller response of LQR control using ADP whose rise time 

and settling time is lesser than the controller response obtained by using conventional LQR 

control. 

 

 
Fig.10. Step response with LQR using ADP 
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Fig.11. Controller output with LQR control using ADP 

 

Table.2 Comparative analysis - step response and controller response of LQR control and 

LQR control using ADP 

 LQR Control RLQR Control 

Time Response 

(in seconds) 
Parameters Step Response 

Rise Time 

Cart Position 

(in meters) 
0.356 0.276 

Pendulum Angle  

(in radians) 
0.498 0.295 

Settling Time 

Cart Position 

(in meters) 
3.676 1.491 

Pendulum Angle  

(in radians) 
4.983 1.897 

 
Controller Response 

 

Controller Output 4.568 1.282 

 

3. CONCLUSION  
 

In this paper a robust linear quadratic regulator (RLQR) control has been introduced 

for nonlinear systems. The choice of weighting matrices Q and R plays a major role when 

performance index or cost function is taken into account. Comparative analysis were also 

made between the conventional LQR control and RLQR control as shown in Table.2 which 

strengthens the objective of this project. To avoid the conventional trial and error method, an 

iterative method called Adaptive Dynamic Programming (ADP) is introduced. The term 

robust here means that the Q and R values obtained in this method are the optimal values and 

replaces the conventional LQR control into the robust LQR control. This method reduces the 

time required to select the weighting matrices which are being chosen from user‟s previous 

experience. The value of Q and R is selected for which it results in minimum cost function. 

The iteration will run for „n‟ number of times till the performance index become minimum. 

This project can be extended for discrete-time nonlinear system as future work. As mentioned 

earlier, there are several types of adaptive dynamic programming which can be selected based 

on the requirements or constraints.  
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