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Abstract: This work deals with servo control problem of a single inverted pendulum using 

Hybrid Particle Swarm Optimization (HPSO) tuned Linear Quadratic Regulator (LQR). It 

is important to select the state (Q) and control (R) weighting matrices of LQR in an optimal 

manner to get optimal results. As a general practice these weighting matrices are selected 

either through trial and error approach or through experience. This practice in particular 

makes the job of a control person more tedious and tiresome. To address this issue, a 

hybrid particle swarm optimization algorithm is proposed to obtain optimal weighting 

matrices. Moreover, the premature convergence of the particles leading to suboptimal 

results is accounted by introducing a local convergence monitor, which not only 

transforms the entire population at the occurrence of local convergence to a new search 

space but also introduces a disturbance factor in the velocity update equation. The 

proposed HPSO tuned LQR control strategy is applied to cart position tracking and 

pendulum angle regulatory control of a single inverted pendulum, which is a highly 

nonlinear open loop unstable system. Experimental results reveal that compared to PSO 

tuned LQR, HPSO tuned LQR has improved tracking response with smooth error 

convergence.    
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1. INTRODUCTION 

 
The theory on optimal control focuses in operating the system with minimal cost without 

compromising the quality. One such well established optimal control algorithm, which made 

the life of a control engineer more sophisticated, is linear quadratic regulator (LQR). 

However, the real challenge in LQR design lies in the proper selection of Q and R weighting 

matrices, which limits the usage of LQR. As a measure to overcome these issues, recently, 

metaheuristic algorithms are used to select the weights in an optimal manner. In this context, 

evolutionary algorithms having the ability in converging to global optima have been widely 

used. One such computationally inexpensive algorithm chosen to solve this problem is 

particle swarm optimization (PSO), available in the literature for more than a decade, 

introduced by J. Kennedy and R. Eberhart [1], Multi-objective binary probability 

optimization algorithm (MBPOA) is introduced to search for optimal weighting matrices [2]. 

In an effort to yield an optimal response, LQR plays a vital role in minimizing the quadratic 

cost function even at small perturbations. This leads to the usage of LQR in many complex 

systems such as aircraft [3], vibration control [4], and fuel cell systems [5]. The performance 

evaluation in terms of computational time, computational effort and convergence rate of PSO 

are compared with GA based feedback controller design in [6], and it is reported that the 

performance of PSO is healthier than GA. In Fighter tracking problems [7], PSO based LQR 
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is proved superior to LMI based methods. PSO algorithm is effectively used in load 

frequency control of power systems [8-9], and in shunt active power filter design [10]. Co-

evolutionary PSO (CPSO) for constrained optimization problems was proposed in [11]. 

Simulation studies are carried out and it is claimed that CPSO obtain some solutions better 

than those which are available in the literature. In reference [12], a hybrid PSO with a 

feasibility based rule for constrained optimization, in a motive to eliminate the drawback of 

determining suitable priority factors was proposed. Digital FIR filter with cuckoo search is 

presented in [13]. Reference [14] presented on the application of PSO combined with 

computational intelligence for fault detection in machines and it is claimed that PSO gives a 

success rate of 98.6 to 100%. Even though PSO has all these merits, it has two undesirable 

characteristics that degrade its exploration abilities. One is premature convergence, that result 

in diversity loss of the particles and the second is the inability to balance between local search 

exploitation and global exploration. Too much search exploitation leads to premature 

convergence of swarm and overemphasize of the global exploration prevents the convergence 

speed of swarm. All these limitations impose constraint on wider applications of PSO in real 

world problems [15]. Hence to address this issue in LQR design, hybrid particle swarm 

optimization (HPSO), a combination of space transformation search and modified velocity 

model is engaged. The efficiency of the HPSO algorithm is tested on a single inverted 

pendulum, which is a typical single input multi output (SIMO) open loop unstable system, 

where the input is the motor voltage and, the cart position and pendulum angle are the 

outputs. 
 

Problem formulation 
Consider a linear time invariant (LTI) system whose state and output equations are written 

as follows 

0);()()(  ttButAxtX
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where A, B, C and D are the system, input, output and direct transition matrices 
respectively. The purpose of LQR design is to compute the optimal weighting matrices that 
minimizes the following cost function. 
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where Q and R are the positive semi definite and positive definite matrices respectively, 
popularly called as the state and control weighting matrices. The state feedback gain K can be 
calculated by solving   

PBRK T1           (4) 
Where P is the solution of the following algebraic Riccati equation. 

01   QPBPBRPAPA TT        (5) 

The Q and R matrices play an essential role in determining the performance of the 
controller. If this Q and R matrices are selected based on the  

 Trial and error approach, it does not result in optimal response.   

 Particle swarm intelligence, it may lead to suboptimal results due to premature convergence of 
the particles.  

Hence, to address this problem in LQR, hybrid particle swarm intelligence is proposed. 
 

HPSO 
The proposed HPSO to tune the LQR weights is a combination of space transformation 

search and modified velocity model. 
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1.1. Space Transformation Search (STS) 
Most of the evolutionary algorithms starts with some arbitrary solution and make an effort 

to improve towards the optimal solutions. The iteration or process terminates either with 
predefined iteration number or with the satisfaction of predefined conditions. In PSO, particles 
fly through the search space using the following position and velocity update equations. 
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where 

i

d

bestpp  and d

gbestip  are the particles best and global best positions, r1 and r2 are the 

random numbers, c1 and c2 are the cognitive coefficients ,w is the inertia weight, i is the 
particle index and d is the dimension of the decision variables. In a few cases the search ends 
with local optima leading to sub-optimal solutions. This is one of the major demerits of PSO 
and this problem is addressed by space transformation search (STS) algorithm. STS algorithm 
introduces a mechanism that will act as a watchdog to monitor the occurrence of premature 
convergence. Under these situations the current search space hardly contains the global 
solution [16]. Now, STS algorithm transforms current search space to a new search space 
called the transformed space. The new transformed solution x* in the transformed space S can 
be calculated as follows:  

xbakx  )(*                        (8) 

x € R within an interval of [a, b] and k can be set as a random number within [0, 1]. Where 
a and b are the particles minimum and maximum values. To be more specific for an 
optimization problem of d decision variables, according to the definition of the STS, the new 
dynamic STS model is defined by  
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The sum of the particles maximum and minimum positions are multiplied by a random 
number k and it is subtracted from the actual particle positions to get the transformed search 
space. The simultaneous evaluation of solutions in the current search space and transformed 
space is done and the search space giving the minimum cost is finalized as the current search 
space. Moreover, the interval boundaries )](),([ tbta d

i

d

i
 are dynamically updated according to the 

size of current search space. 
1.2. Modified velocity model 

In PSO particles are attracted to their corresponding previous personal best (Pbesti) and 
global best (gbesti) positions. As iteration progresses, particles move very close to Pbesti and 
gbesti respectively. Due to this the difference between Pbesti and the current particle position xi 
becomes very small, and this will be same for the global best particles. Moreover, according to 
the velocity update equation the velocity becomes very small. Once Pbesti or gbesti falls into 
local minima, all particles in the swarm will quickly converge into local minima leading to 
premature convergence. All the particles will be stagnant and the chance to escape from local 
minima becomes very less. As a measure to overcome this drawback this paper proposes a 
convergence monitor to watchdog each Pbesti and gbesti positions in the search space. If the 
value of the convergence monitor reaches the threshold limit, a new modified velocity model 
is introduced to disturb the position of the particles by providing a disturbance factor in the 
cognitive and social part of the velocity update equation 
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where d1 and d2 are the disturbance factors with a random value within [0,1]. The 
pseudocode of HPSO is shown in Table 1. 
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Single inverted pendulum 

The effectiveness of HPSO tuned LQR framework is demonstrated using single inverted 
pendulum, a typical single input multiple output (SIMO) benchmark system. Problem 
formulation starts with linear time invariant (LTI) system and here nonlinearity is duly 

appreciated. 

  
Fig. 1. Schematic diagram of Single Inverted Pendulum. 

Fig. 2.  
This system consists of two encoders, one to measure the pendulum angle and the other to 

measure the position of the cart.  Fig. 1 shows the schematic diagram of a single inverted 
pendulum. Stabilization control is the control scheme used to meet the control objectives of 
maintaining the pendulum angle at zero degree with simultaneous tracking of cart reference 
trajectory. Due to the practical limitation on control input (motor voltage) given to the cart 
system, stabilization control is implemented using LQR. Based on Euler-Lagrangian energy 
approach the nonlinear equation of motion of pendulum can be written as  
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Four variables namely, cart position, cart velocity, pendulum angle, and pendulum velocity 

are taken as state variables and the state space model is obtained by linearizing the model 
around the equilibrium point   1)cos(,)sin(   . Therefore the linearized model of the 

inverted pendulum can be written as  
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For the controller design the single inverted pendulum system parameters shown in Table 2 
are taken from quanser IP01 and IP02 user manual [17]. By substituting those parameters in 
the A and B matrices the following state representation is arrived. 

0 0 1 0 0

0 0 0 1 0
 

0 2.2643 15.8866 0.0073 2.2772

0 27.8203 36.6044 0.0896 5.2470
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Table 1  
Pseudocode of HPSO 

 

 
Table 2 

List of parameters 
 

Symbol Description Value/Unit 

R Motor armature resistance 2.6Ω 

L Motor armature inductance 0.18 mH 

 

 

Initialize the particles in  swarm arbitrarily 

for  i ≤ N; Fixed number of iterations 

set convergence monitor (S) = 0 

Evaluate the cost function
2 ( )f ISE e t dt    

for  i = 1 to n; To check for local convergence. 

if f < fpbesti 

fpbesti    f 

xpbesti   xi 

end if 

if f < fgbesti 

fgbesti    f 

xgbesti    xi 

else if  

S = S+1 

end if 

if S > Sthreshold 

for d = 1 to dimensions 

update the particles position and velocities using equations 6 and 11 

end for 

end if 

end for 

end for 
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Kt Motor torque constant 0.00767 Nm/A 

Km Motor EMF constant 0.00767 Ns/rad 

Jm Rotor moment of inertia 3.9*10–7 kgm2 

Kg Gearbox ratio 3.71 

rmp Motor pinion radius 6.35*10–3 m 

rp Position pinion radius 1.48*10–2 m 

Beq Equivalent viscous damping coefficient 

at motor 

5.4 Nms/rad 

Bp Viscous damping coefficient at pendulum 

pivot 

5.4 Nms/rad 

lp Pendulum length from pivot to centre of 

mass 

0.3302 m 

I Pendulum moment of inertia 7.88*10–3 kgm2 

Mp Pendulum mass 0.23 kg 

M Cart mass 0.94 kg 

Kt Motor torque constant 0.767  

 

 
2. EXPERIMENTAL RESULTS AND DISCUSSION 

 
HPSO tuned LQR framework is implemented in servo control problem of an inverted 

pendulum and the dynamic performance over conventional PSO tuned LQR framework is also 
compared in this work. HPSO based LQR servo control algorithm is implemented in 
MATLAB 2011a. Hardware setup is shown in Fig.2. The number of decision variables to be 
optimized for the servo control of the single inverted pendulum is chosen to be three (q11, q22 
and R) and the parameters used for HPSO and PSO algorithms are shown in Table 3. From 
Table 3 it can be inferred that the parameters for both algorithms remain the same except the 
presence of convergence monitor and the disturbance factors d1 and d2. According to the cost 
or fitness function ISE, the optimization algorithms are executed for specified number of 
iterations and with the help of convergence monitor and disturbance factor in the velocity 
update, the global best of the particles, so called the weights of LQR, are obtained. Table 4 
gives the corresponding Q and R matrices and controller gain K of LQR obtained using the 
PSO and HPSO algorithms.  
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Fig. 3. Single Inverted Pendulum hardware set-up 

 

 
Fig. 4. HPSO Particle Best Positions. 

 
The particles best positions of the HPSO and PSO algorithms are illustrated in Fig. 3 and 

Fig. 4, where the X-axis represents the number of decision variables, Y-axis represents the 
number of iterations and Z-axis represents the weighting matrix dimensions. It is worth to note 
in Fig. 3 that in the iteration number 70, whole population transformation occurs due to local 
trapping, and it is also clear that the particle is transformed to new search space in the 
consecutive iterations. Thus trapping up of particles in local minima is identified by the 
convergence monitor and the transformation of particles to new search space is taken care by 
the STS algorithm and, the speed of convergence is taken care by modified velocity model. 
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Fig. 5. PSO particle best positions 

Comparing the Z-axis dimension of Fig. 3 and Fig. 4 it is evident that, smooth convergence 

occurs in HPSO compared to PSO tuned LQR framework. 
Table 3 
Parameters of HPSO and PSO algorithms 

 
2.1. Trajectory tracking response 

A magnitude of 200 mm (peak to peak), frequency of 0.05 Hz square trajectory is given as 
input to the system to test the transient and steady state behavior of the system for the 
proposed HPSO tuned weighting matrices of LQR. The corresponding output responses of 
PSO and HPSO tuned LQR are illustrated in Fig. 5. 

 
Table 4 

Controller Parameters of PSO and HPSO Algorithm 

 

Optimization 

algorithm 

Weighting matrices Controller gain 
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



















0000

0000

0097.80

00088.31

Q

  
]0006.0[R  

T

K

























0641.32

5455.98

1288.269

8039.164
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8623.43
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7399.280

 

Parameters HPSO PSO 

No of Population (N) 30 30 

No of Iterations (i) 100 100 

Dimensions (d) 3 3 

C1 0.9 0.9 

C2 1.2 1.2 

Inertia weight (w) 0.9 0.9 

Convergence Monitor yes - 

d1 and d2 Random values - 
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Table 5 
Time Response Analysis of Cart Position 

 

Optimization method 

 

Time domain parameters 

td(s)     ts(s) 

PSO 0.522 3.25 

HPSO 0.426 1.273 
 

 
Fig. 6. Cart position for square trajectory 

 

 
Fig. 7. Zoomed view of cart position for square trajectory 

Fig. 8.  

 
Fig. 9. Pendulum angle for square trajectory 

 

 
Fig. 10. Zoomed view of pendulum angle showing the transient response 
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Fig. 11. Zoomed view of pendulum angle showing the steady state response 

 
Table 6 

Statistics of Pendulum Angle Response 
Optimization algorithm Median Mode 

HPSO 0.1758 0.0878 

PSO 0.1758 0.1758 

From table 5 it can be inferred that settling time is reduced by 60.6 % and the delay time is 
reduced by 18.3 % in HPSO algorithm compared to PSO algorithm. It is evident from the 
illustrations that the response of HPSO tuned LQR framework is appealing compared to PSO 
tuned framework in terms of delay time and settling time. Pendulum angular response for the 
test signal is shown in Fig. 7, the zoomed view shown in Fig. 8 is to depict the transient 
behavior, and the zoomed view in Fig.9 is to suppose the steady state behavior.  
The steady state statistical analysis of the pendulum angular response is depicted in Table 6. 
It is worth to note that the mode of the pendulum angle for HPSO tuned LQR is 0.0878 and 
that of PSO tuned LQR is 0.1758. The mode in Table 6 represents the value that appears most 
often in a set of data. It is evident from the mode that HPSO outperforms PSO.  
 
Table 7 
Pendulum Angle Response 
Optimization algorithm Convergence time (s) 

PSO 1.83 

HPSO 1.57 
From Table 7 it can be inferred that the convergence time is reduced by 14.2 % in HPSO 

algorithm compared to PSO algorithm. It is evident from the analysis that, the HPSO tuned 
LQR controller performance is dynamic in servo control applications. 

 
3. CONCLUSIONS 

 
In this paper, the premature convergence problem of PSO tuned LQR has been solved 

using HPSO and the efficacy of the controller has been tested on a quanser single inverted 
pendulum. Trapping up of the particles in local optima is identified by the convergence 
monitor and, the convergence in sub-optimal solutions due to premature convergence is 
prevented by introducing a disturbance factor in the velocity update along with the 
transformation in search space. The trajectory tracking response of inverted pendulum shows 
that compared to PSO tuned LQR, HPSO tuned LQR can result in not only improved tracking 
response but also reduced tracking error. 
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