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Abstract: A glucocorticoid receptor High-Throughout (cell) Imaging (HTI) screen to predict 

target protein activity in a variety of seemingly unrelated tests. The repurposing method 

raised hit rates by 60 to 250 times over the primary project assays in two ongoing drug 

discovery projects, while also boosting the chemical structure diversity of the hits using 

machine learning. Our findings show that data from existing HTI screens is a significant 

source of data that may be repurposed to aid drug discovery efforts. 

 

Keywords: High-Throughput imaging, Drug discovery, Biological Activity prediction, 

Machine learning 

 

1. INTRODUCTION 

 

High-throughput (cell) Imaging (HTI) is a technique that uses high-throughput microscopy to 

record the morphology of a cell and its organelles. It has been effectively used in a variety of 

current biological research areas (Walter, 2010; Pepperkok and Ellenberg, 2006; Ahmed et al., 

2021; Starkuviene and Pepperkok, 2007). HTI is used to screen chemical compounds based on 

the morphological changes they cause in a pharmacological environment (Yarrow et al., 2003; 

Held, 2010). Most HTI screens are currently intended to evaluate only a few morphological 

aspects from an image (Singh et al., 2014), as seen in Fig. 1b. These physical characteristics 

are thought to reflect that biological process directly. Any imaging biological system, on the 

other hand, has thousands of biochemical processes and possible therapeutic targets, all of 

which are exposed to the screened chemical compounds. Many of these targets and processes 

have an impact on cell morphology, which may be gleaned to a significant extent from 

photographs (Ganapathy et al., 2021b). This set of traits can be used to define chemical 

compounds and can be thought of as a fingerprint based on images. Wawer (2014) suggested 

that image-based fingerprints be used to improve the diversity of medium-scale compound 

collections. Compounds can also be grouped by pharmacological mechanism using image-

based fingerprinting (Caicedo et al., 2016). As a result, pictures provide a rich source of 

biological data that can be used for a variety of applications in drug development. 
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Figure 1: Repurposing imaging screens 

 

A method for systematically evaluating image-based fingerprints from HTI screens for 

predictability on a large number of protein targets is presented, the majority of which were not 

considered during the screen's design (Figure 1). Caicedo et al. (2016) perform this by an 

exhaustive fingerprint of morphological traits was extracted for each compound imaged in a 

single screen, with the goal of capturing as much information as possible in a single screen. A 

machine learning approach is used to predict activity across a large number of validated target 

assays (hence referred to as assay) using the image-based fingerprint of the drugs, and 

evaluated model performance for each assay (Bynagari & Fadziso, 2018; Donepudi and 

Bynagari, 2021). Existing HTI screens, we argued, might be repurposed to provide information 

on the activity of untested drugs in assays for which a high-quality model exists (Fig. 1a). 

This process is similar to virtual screening and QSAR predictive modeling approaches, but it 

differs in that it uses image-based fingerprints rather than chemical fingerprints that encode 

complex structure (Bynagari, 2018). Because chemical fingerprints do not include biological 

or target information, chemistry-based models are predictively performant only for those areas 

of the chemical space for which sufficient assay activity data is available. As a result, molecules 

that are chemically dissimilar to any known active ingredient are unlikely to be predicted as 

such. The availability of chemically comparable training samples should be less of a concern 

for image-based models (Bynagari, 2019; Donepudi, 2015). The model then predicts by 

correlating all imaged biology to biological processes. As a result, in innovative and activity-

wise poorly characterized chemical space, image-based models may outperform chemistry-

based models. 

 

2. OBJECTIVES OF THE STUDY 

 

This study is aimed at repurposing high-throughput imaging tests for drug discovery allows for 

biological activity prediction. To achieve this, a comprehensive pattern of morphological 

characters will be extracted for each composite imaged in a single screen, with the objective of 

capturing as much information as possible in a single screen. A machine learning approach is 

used to predict activity across a large number of validated target assays. 
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3. LITERATURE REVIEW 

 

Macau: Bayesian matrix factorization 

The Macau Bayesian matrix factorization method, which uses image data from Cell Profiler as 

side information. Macau represents each chemical and each assay by D-dimensional latent 

vectors ui and vj, respectively, to factorize the 524, 370 X 1, 199 activity matrix Y. The scalar 

product 𝑢𝑖
𝑇𝑣𝑗gives the prediction for the element Yij, which corresponds to the activity of 

compound ί on assay j. The picture characteristics xi are 841 dimensional vectors that are added 

to the prior of the latent vectors of compounds ui (Donepudi and Bynagari, 2021). 

This outcomes in the probabilistic prototypical of  

𝑌𝑖𝑗 ~ Ν(𝑢𝑖
𝑇𝑣𝑗 , 𝛼−1 

𝑢𝑖  ~ 𝑁(𝜇𝑢 +  𝛽𝑥𝑖 , Λ𝑢
−1) 

𝑣𝑗  ~ 𝑁(𝜇𝑢, Λ𝑢
−1) 

where 𝛼 is the precision of the observations, 𝜇𝑢 and  Λ𝑢 model the mean and precision of 

compound latent vectors, 𝜇𝑢 and Λ𝑣  model the latent vectors for assays, respectively. The 

parameter 𝛽 is a D x 841 dimensional matrix that maps image characteristics to compound 

latent space (Bynagari and Asadullah, 2021). We use a Gaussian prior on it to learn: 

𝛽 ~ 𝑁(0, (Λ𝑢 ⊗ 𝜆𝛽𝐼841)−1 

where ⊗ is the Kronecker product, 𝜆𝛽 is the accuracy parameter, and I841 is the 841-

dimensional identity matrix. The plate diagram for the probabilistic model is shown in Figure 

2. 

 
Figure 2: Diagram for the probabilistic model for the used matrix factorization approach 

Macau 

 

Simm (2015) expresses Gibbs sampler for the model by deriving conditional probabilities. 

Except for and D, which are fixed at 10 and 150, the Gibbs sampler was utilized to learn the 

model's parameters. We ran Gibbs sampler for 2000 iterations in the experiments and discarded 

the first 400 as burn-in. To arrive at the final answer, we construct a prediction for Yij using 

each Gibbs sample and then average the results. A 3-fold cross-validation was utilized to assess 

the model's performance, as explained in the next section. 

 

Cross-validation and measuring predictively 

A 3-fold cross-validation was employed in our in silico tests, where all of the compounds in a 
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chemical series are in a single fold (see Figure 3). The 0.7 Tanimoto similarity cutoff on ECFP6 

characteristics was used to define each chemical series (Bynagari, 2021). As a result, no 

compound in the test set is chemically similar to a compound in the training set. It can assess 

the model's ability to generalize across series using this arrangement. 

 
Figure 3: Clustered cross-validation for compound-protein activity prediction 

 

The test AUC-ROC scores was constructed for each cross-validation fold for each target assay 

at pIC50 levels of 5.5, 6.5, 7.5 and 8.5. For each assay-threshold pair, we utilize the average of 

the three folds as the assessment metric. Only assay-threshold pairings with at least 25 actives 

and 25 inactives are kept, and the model is considered to have high (moderate) predictivity on 

an assay if one of the thresholds has an AUC-ROC of greater than 0.9. (0.7). 

Auto fluorescence filtering and CNS availability 

Compounds that are promiscuously active, for example, due to the presence of particular 

substructure motifs, are known as frequent hits (Donepudi, 2016). Some molecules may also 

be dyes, reactive species, or interfere with specific test technologies such as Fluorescent or 

Alpha Screen readouts. For removing such promiscuous chemicals from HTS hits, Baell and 

Holloway (2010) proposed a Pan Assay Interference Compounds (PAINS) filter.  

The Blood-Brain-Barrier (BBB) is a crucial barrier in the central nervous system that separates 

blood from the brain (CNS) (Manavalan, 2019a). For the sake of avoiding undesired side 

effects, medications for CNS disease indications should traverse the BBB, while drugs for non-

CNS disease indications should not. Passive diffusion permits water and lipid-soluble 

compounds to move through the BBB. Passive diffusion models based on logP and polar 

surface area (PSA) of chemicals (Egan et al., 2000), or active transport via a P-glycoprotein 

(P-gp) substrate probability of substances (Wang, 2015; Garg and Verma, 2006; Bynagari, 

2020), are the two major estimations for BBB permeability. According to st, we filtered out all 

chemicals that do not have BBB permeability. 

 

Deep neural networks (DNNs) 

Deep Neural Networks (DNNs) were constructed, which are feed-forward artificial neural 

networks with multiple layers and a huge number of neurons (Mayr et al., 2016). DNNs are 

made up of layers of linked neurons that are stacked hierarchically. The neurons in the 

network's first layer (the input layer) receive an input vector containing the chemical 

compound's descriptors (Donepudi, 2017). The intermediate layers (hidden layers) are made 

up of hidden neurons with weighted connections to the neurons of the lower level layer, and 

can be thought of as abstract features constructed from the features below. The model's 

predictions are provided by the final layer (the output layer). A DNN may have thousands of 
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neurons in each layer, whereas previous networks used a modest number of neurons (Ciresan 

et al., 2012; Manojkumar et al., 2021). The general architecture of Deep Neural Networks is 

shown in Figure 4. 

 
Figure 4: Architecture of Deep Neural Networks 

 

As network inputs, HCI features are used.  

Image attributes from Cell Profiler are averaged across several cells to represent each chemical 

component. These 841 characteristics were fed into the DNNs' input layer. 

The function of activation: In the buried layers, we employed rectified linear units (ReLUs) 

as activation functions. Sigmoid activation functions are used in the output layer. 

Regularization: A variety of regularization approaches was used, including Dropout 

(Srivastava et al., 2014) and early halting, to avoid overfitting. A validation set was used to 

calculate the dropout rate and the early-stopping parameter, which is the number of epochs 

after which learning stops (Donepudi, 2018). 

Multitasking is a term that refers to the ability to do. The prediction job at hand is a multi-task 

situation since each chemical component can have several biological actions. Multi-task 

learning is a natural feature of deep learning (Caruana, 1997). These activities can help each 

other increase the representation of samples in the hidden layers, resulting in improved 

performance (Mayr et al 2016). Each assay was modeled using a separate output unit, resulting 

in DNNs with roughly 1,200 output units.  

Objective Purpose For our DNNs, we employed cross-entropy as a loss function: 

∑ ∑ 𝑚𝑖𝑗

𝑗𝑖

 (𝑌𝑖𝑗 log(𝑌𝑖𝑗) + (1 −  𝑌𝑖𝑗) log(1 − 𝑌𝑖𝑗))  

where Yij is the chemical I and assay prediction, and Yij is the actual label. In this test, Yij 

indicates whether the chemical was active (Yij = 1) or inactive (Yij = 0). Furthermore, the 

activity of many chemicals has not been tested, which accommodated with a binary variable 

mij that is zero if a measurement is present and zero otherwise.  

DNN training and software implementation 

The DNNs were trained using mini batch Stochastic Gradient Descent (SGD). As a result, we 

used the CUDA parallel computing platform to develop the DNNs using NVIDIA Tesla K40 

GPUs to achieve speedups of 20-100x over CPU implementations. 

Search with hyper-parameters: In a nested cross-validation approach, we improved the DNN 

architecture and hyper-parameters such as learning rate, early-stopping parameter, and Dropout 

rate on a validation set (Baumann and Baumann, 2014; Neogy & Bynagari, 2018; Hochreiter 
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and Obremayer, 2004). By using hyper-parameter selection, this approach generates unbiased 

performance estimates. 

Because only the top performing hyper-parameters are tried on the outer folds, and the hyper-

parameters are optimized on the interior folds. With 1024, 2048, or 4096 units in each layer, 

we investigated 1, 2, or 3 layer networks. The learning rates that were examined were 0.01, 

0.05, and 0.1. The dropout rates in the input layer and the hidden layers were either adjusted to 

zero or to 10% dropout in the input layer and 50% dropout in the hidden layers. Furthermore, 

we investigated whether the dropout rate should be increased arithmetically from 0 to the given 

dropout rate after each epoch (“dropout schedule”), or whether the dropout rates should remain 

constant (“no dropout schedule”) during learning. The hyper-parameters and architecture 

design parameters that were employed for the DNNs, as well as their search ranges, are 

summarized in Table 1. 

 

Table 1: Hype-rparameters considered for Deep Neural Networks 

Hyperparameter Considered values 

Number of Hidden Units {1024, 2048, 4096} 

Number of Hidden Layers  {1, 2, 3} 

Learning Rate {0.01, 0.05, 0.1} 

Dropout {no , yes (50% Hidden Dropout, 10% Input Dropout)} 

Dropout-schedule {no, yes} 

 

When averaged throughout the three cross-validation folds, the following hyper-parameters 

performed best: 3 layers with 2, 048 units, learning rate 0.05, Dropout: yes, Dropout-schedule: 

yes. 63 epochs was found to be the early stopping-parameter. 

Random Forests (RF) 

Random Forests perform well on a wide range of tasks using various types of descriptors 

(Breiman, 2001), and their performance is rather robust in terms of hyper-parameter choices 

(Polishchuk, 2009). To obtain a stable model with great performance, we used a large number 

of trees (Oshiro et al., 2012). The number of features examined at each split (Louppe, 2014), 

which we changed in the established nested cross-validation configuration, is the crucial 

parameter. In our constructed framework, we trained and assessed models for each assay 

individually using different hyper-parameters listed in Table 2 and the Random Forest 

implementation “ranger” (Wright and Ziegler, 2015). 

 

Table 2: Hyper-parameters considered for Random Forests 

Hyperparameter Considered values 

criterion {Gini, cross-entropy} 

number of trees {250} 

number of features considered at each split {1, 2, 3} x √total number of features 

 

Method Performance 

For prediction performance using imaging features as inputs, we examined Macau, a regression 

approach based on Bayesian matrix factorization with side information (Online Methods), 

random forest classification (Breiman, 2001; Ganapathy et al., 2021), and deep neural networks 

(Mayr et al., 2016; Ganapathy et al., 2021a) (Online Methods). We discovered that the 

techniques were comparable in terms of properly predicting which assays could be performed. 

In particular, all three techniques predicted 11 assays with AUC greater than 0.9 (Venn diagram 
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in Figure 5). Similarly, all three methodologies showed that 182 assays had an AUC greater 

than 0.7. (Venn diagram in Figure 6). The number of tests in which only one or two techniques 

provided an AUC greater than 0.7 is comparable to the number of assays in which only one or 

two methods provided an AUC greater than 0.7. As a result, we conclude that image features, 

rather than the machine learning method, drive performance. 

 
Figure 5: Venn diagram: number of protein targets with high predictivity (AUC > 0:9). 

 

 
Figure 5: Vienn diagram: number of protein targets with predictivity AUC >0:7. 

 

4. METHODS 

 

Data Set 

There are 524,371 samples in the data set, 842 features, and 1,200 prediction tasks. Chemical 

compounds were supplied to cells, and the samples correspond to them. The features come 

from a combination of a biological imaging technique and the Cell Profiler program, which 

calculates morphological aspects of observed cells (Manavalan, 2021). This means that a 

chemical molecule is defined by the morphological changes it causes in cells. Compound 

activities were assessed in numerous separate biological studies, referred to as assays, for the 

prediction tasks. Typically, a single compound is detected in one or a few assays, resulting in 

a matrix with several unknowns that must be predicted. For the 1,200 prediction jobs, there are 

about 10 million activity values, resulting in a fill rate of around 1.6 percent. To enable nested 

cluster cross-validation, the samples were spread across three cross-validation folds (Mayr et 

al., 2016). (See Section "Cross-validation and Predictivity Measurement") 

 

Experimental Approaches 

We used a high-throughput imaging screen of 524,371 chemicals that was originally used to 

identify glucocorticoid receptor (GCR) nuclear translocation in our research. Each chemical 

was given to H4 brain neuroglioma cells at a concentration of 10M, incubated for one hour, 

and then 1M hydrocortisone was added to promote GCR translocation. Cells were frozen and 

photographed in 3-channel fluorescence after an additional hour of incubation, using a nuclear 
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stain (Hoechst), Cell Mask Deep Red (Invitrogen) to outline cell borders, and indirect 

immunofluorescence detection of GCR. 

The photos were post processed with Cell Profiler software to repurpose the screen. We 

extracted unbiased maximum useful features from the photos using a process similar to 

Gustafsdottir and colleagues (2013). The pipeline created an image-based fingerprint with 841 

features for each cell in the image. Each compound was then represented in our machine 

learning models by a vector of feature medians across all cells in the image (Vadlamudi et al., 

2021; Manavalan, 2019b). 

 

5. RESULTS AND DISCUSSION 

 

Then, using Bayesian matrix factorization and the image-based fingerprint as side information, 

we developed a machine-learning model. Using more than ten million activity measurements, 

this model was tested for predictability across assays that map to more than 600 

pharmacological target. A layered cluster cross-validation was used to evaluate the model's 

performance (Mayr et al., 2016). For 37.3 percent of the assays (AUC > 0.7 on 225 assays, 

Online Methods), the model was very predictive, and for 5.6 percent of the assays (AUC > 0.9 

on 34 assays, Online Methods), the model was highly predictive. 

The target for the oncology study was a kinase that had no known direct relationship to the 

glucocorticoid receptor (Ahmed & Ganapathy, 2021). We rated over 60,000 chemicals tested 

in the GR assay but for which no activity measurement was provided in the cancer screen using 

our matrix factorization algorithm. The 342 chemicals scored best by our matrix factorization 

method, about the number of noncontrol wells on a plate, were subsequently empirically 

confirmed. This yielded 141 sub-micromolar hits (41% hit rate), indicating a 60-fold 

enrichment over the first HTS results (0.725 percent hit rate). 

To assess the chemical diversity of the hits, we calculated the Tanimoto similarity of each hit 

to the nearest hit discovered by the original HTS (based on extended-connectivity fingerprints 

(ECFP) (Rogers and Hahn, 2010). When compared to the initial finds (red distribution in Fig. 

6a), the distribution of these similarities indicates that the image-based hits have significantly 

improved chemical structural diversity (shift to the left) (green). 

 

 
Figure 6: For each compound in a set, the ECFP (radius 4) based Tanimoto similarity to the 

nearest hit from the initial screen was considered 

 

The image also shows the distribution of substances chosen at random as a point of comparison 

(blue). As a result, the HTI matrix factorization model identified candidate compounds with a 
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high hit rate, and the hit space was diversified. The target for the CNS project was a non-kinase 

enzyme with no evident relationship to the glucocorticoid receptor. 

The activity of all 500,000 image-annotated chemicals was predicted using our matrix 

factorization model. Unfavorable properties (Baell and Holloway, 2010), such as 

autofluorescence and low predicted central nervous system availability, were filtered out of 

compounds with predicted submicromolar activity, and the remaining compounds were 

grouped into chemical clusters from which we randomly selected a handful of representatives 

from each cluster. 

The 140 compounds that resulted from this technique were evaluated in the lab, and 

submicromolar activity was confirmed in 37 of them, resulting in a 22.7 percent hit rate, or a 

250-fold enrichment over the initial HTS hit rate (0.088 percent). The 37 hits mapped to 32 

Murcko scaffolds (Bynagari & Amin, 2019) that were not present in the initial list of hits, which 

is significant. That conclusion is supported by the distribution of Tanimoto similarities to the 

closest hit in the initial screen (Figure 6b). These findings suggested that using an image-based 

compound selection technique can improve hit rate and diversity.  

We used three different machine learning approaches to see if the success of our approach is 

due to the machine learning method or the description of chemical compounds by image 

features (Ahmed, 2021b). We employed Macau (Simm, 2015), a Bayesian matrix factorization 

with side information regression approach (Online Methods), random forest classification 

(Breiman, 2001), and deep neural networks (Mayr et al., 2016; Khan et al., 2021). In terms of 

the tests that could be reliably predicted, these machine learning models performed similarly 

(Manavalan, 2018). Our cross-validation setup further ensures that the predicted performance 

is not based on the same compound's activity data across many targets. As a result, we conclude 

that the description of compounds using imaging features is critical to the success of our 

method.  

The method is a supervised machine learning method, which means that output labels (in this 

case, activity measures) are required to train the model. This necessitates the acquisition of 

activity measurements for a sufficiently large library of chemicals (Manavalan, 2020). 

Our findings suggest that photos from HTI screening initiatives undertaken in a variety of 

institutions can be repurposed to boost hit rates in other projects, even those that appear 

unrelated to the HTI screen's initial aim. 

As a result, it may be able to replace certain assays with imaging technologies and machine 

learning models, which could be more cost-effective (Ahmed, 2021a). Imaging screens provide 

a view of multiple cellular activities by accessing rich morphological aspects of the cell, 

resulting in a fingerprint of biological action. This raises the intriguing question of how many 

targets imaging screens could reach if alternative cell lines, culture conditions, organelle 

labeling, and/or incubation durations are used.  

 

6. CONCLUSION 

 

The goal of this paper was to show how HTI data may be used to identify a variety of hits 

without having to retest the entire library in the target assay. Our models may also aid target 

deconvolution for phenotypic screens by prioritizing targets with anticipated activities that 

correspond to phenotypic findings. Raw photos could also be used directly in the activity 

prediction pipeline, thanks to recent developments in convolutional neural networks. This 

would enable the model to learn the optimal image attributes for the task at hand, thereby 

strengthening our strategy. Furthermore, our findings are based on a single HTI screen, and we 

believe that a combination of many HTI screens could be even more effective in predicting 
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assay activity. Finally, the median values across all cells in an image are our imaging 

characteristics. Models based on the distribution of feature values (e.g. quantiles) or even single 

cell analysis, on the other hand, may have greater predictive potential and will be studied in the 

near future. 
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