The relation among vague filters andResiduated Lattices

R.Illakiya,S.MuhameadSanawaz,SenthamilSelvi, Kavitha
Nehru Institute of Technology
Department of Mathematics, Coimbatore. nitkavitha@nehrucolleges.com

Abstract

: The focus of this paper is to develop The relation between the vague filters and residuated lattices, and its essential properties are investigated. Characterizations of vague filters in residuated lattice are established. We discuss some properties of vague filters in terms of its level subsets. Also the notion of Extended pair of vague filter is introduced and characterize their properties.

1.Introduction:

The notion of residuated lattices is initiated in order to provide a reliable logical foundation for uncertain information processing theory and establish a logical system with truth value in a relatively general lattice. The concept of fuzzy set was introduced by Zadeh (1965) [19]. Since then this idea has been applied to other algebraic structures. Since the fuzzy set is single function, it cannot express the evidence of supporting and opposing. Hence the concept of vague set [6] is introduced in 1993 by W.L.Gau and Buehrer. D.J. In a vague set A, there are two membership functions: a truth membership functiont t_{A} and a false membership function f_{A}, where t_{A} and f_{A} are lower bound of the grade of membership respectively and $t_{A}(\mathrm{x})+f_{A}(\mathrm{x}) \leq 1$. Thus the grade of membership in a vague set A is a subinterval $\left[t_{A}(\mathrm{x}), 1-f_{A}(\mathrm{x})\right]$ of $[0,1]$. Vague set is an extension of fuzzy sets. The idea of vague sets is that the membership of every elements which can be divided into two aspects including supporting and opposing. With the development of vague set theory, some structure of algebras corresponding to vague set have been studied. R.Biswas [3] initiated the study of vague algebras by studying vague groups.T.Eswarlal [5] study the vague ideals and normal vague ideals in semirings. H.Hkam , etc[13] study the vague relations and its properties. Quotient algebras are basic tool for exploring the structures of algebras. There are close correlations among filters, congruences and quotient algebras.

2.Vague Filters on residuated Lattice

Definition 2.1:

A Vague set A of L is called a vague filter of L, if for any $x, y \in L$:

1. $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$
2. $V_{A}(\mathrm{y}) \geq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)$

Theorem 2.2:

Let A be a vague filter of L. Then, for any $\mathrm{x}, \mathrm{y} \in \mathrm{L}$ if $\mathrm{x} \leq \mathrm{y}$, then $V_{A}(\mathrm{x}) \leq V_{A}(\mathrm{y})$.

Proof:

Since $x \leq y$, it follows that $x \rightarrow y=I$. Since A is a vague filter of L, we have
$V_{A}(\mathrm{y}) \geq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)$ and $V_{A}(\mathrm{I})$ $\geq V_{A}(\mathrm{x})$ for any $\mathrm{x}, \mathrm{y} \in \mathrm{L}$.
Therefore $V_{A}(\mathrm{y}) \geq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)$
$=\min \left(V_{A}(\mathrm{I}), V_{A}(\mathrm{x})\right) \geq \min$
$\left(V_{A}(\mathrm{x}), V_{A}(\mathrm{x})\right)=V_{A}(\mathrm{x})$.
Therefore $V_{A}(\mathrm{x}) \leq V_{A}(\mathrm{y})$.

Special Issue on Proceedings of International Conference on Materials Manufacturing and Nanotechnology, June 2021. International Journal of Aquatic Science, Vol 12, Issue 03, 2021

Theorem 2.3:

Let A be a vague set on L. Then A is vague filter of L, if and only if, for any x, y, $\mathrm{z} \in \mathrm{L} V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$ and $V_{A}(\mathrm{x} \rightarrow \mathrm{z}) \geq$ $\min \left(V_{A}(\mathrm{y} \rightarrow(\mathrm{x} \rightarrow \mathrm{z})), V_{A}(\mathrm{y})\right)$

Proof:

Let A be vague filter of L,
obviously $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$ and $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$ and $V_{A}(\mathrm{x} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{y} \rightarrow(\mathrm{x} \rightarrow \mathrm{z})), V_{A}(\mathrm{y})\right)$ holds for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{L}$. Taking $\mathrm{x}=\mathrm{I}$ in $V_{A}(\mathrm{x} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{y} \rightarrow(\mathrm{x} \rightarrow \mathrm{z})), V_{A}(\mathrm{y})\right)$, we have $V_{A}(\mathrm{z})=V_{A}(\mathrm{I} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{y} \rightarrow(\mathrm{I}\right.$ $\rightarrow \mathrm{z})$), $\left.V_{A}(\mathrm{y})\right)=\min \left(V_{A}(\mathrm{y} \rightarrow \mathrm{z}), V_{A}(\mathrm{y})\right)$. Since $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$ holds, and so A is a vague filter of L .

Theorem 2.4:

Let A be a vague set on L. Then A is a vague filter of L, if and only if, for any x, y, $\mathrm{z} \in \mathrm{L}$, A satisfies if $\mathrm{x} \leq \mathrm{y}$, then $V_{A}(\mathrm{x})$

Remark 2.5:

A vague set on L is a vague filter of L, if and only if, for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{L}:$ if $\mathrm{x} \rightarrow(\mathrm{y} \rightarrow$ z) $=\mathrm{I}$
then $V_{A}(\mathrm{z}) \geq \min \left(V_{A}(\mathrm{x})\right.$, $V_{A}(\mathrm{y})$).

Remark 2.6:

A vague set on L is a vague filter of L, if and only if, for any $x, y, z \in L$:

$$
\text { if } a_{n} \rightarrow\left(a _ { n - 1 } \rightarrow \ldots \rightarrow \left(a_{1} \rightarrow\right.\right.
$$

$\mathrm{x}) \ldots ..)=\mathrm{I}$, then $\quad V_{A}(\mathrm{x}) \geq \min \left(V_{A}\left(a_{n}\right)\right.$, $\left.\ldots \ldots, V_{A}\left(a_{1}\right)\right)$

Theorem 2.7:

A vague set on L is a vague filter of L, if and only if, for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{L}$, A satisfies Remark 2.5 and $\quad V_{A}((\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \rightarrow$ $\mathrm{z}) \geq \min \left(V_{A}(\mathrm{x}), V_{A}(\mathrm{y})\right)$.

Proof:

If A is a vague filter of L then Remark 2.5 holds. Since $\left.V_{A}((\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \rightarrow \mathrm{z}) \rightarrow \mathrm{z}\right) \geq$ $\min \left(V_{A}((\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \rightarrow(\mathrm{y} \rightarrow \mathrm{z})), V_{A}(\mathrm{y})\right)$. As $(\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \rightarrow(\mathrm{y} \rightarrow \mathrm{z})$
$\leq V_{A}$ (y)for any $\mathrm{x}, \mathrm{y} \in \mathrm{L}$ and $\quad V_{A}(\mathrm{x} * \mathrm{y}) \geq$ $\min \left(V_{A}(\mathrm{x}), V_{A}(\mathrm{y})\right)$.

Proof:

Assume that A is a vague filter of L , obviously if $\mathrm{x} \leq \mathrm{y}$, then $V_{A}(\mathrm{x})$ $\leq V_{A}$ (y)holds for any $\mathrm{x}, \mathrm{y} \in \mathrm{L}$. Since $\mathrm{x} \leq \mathrm{y} \rightarrow$
($\mathrm{x} * \mathrm{y}$), we have $V_{A}(\mathrm{y} \rightarrow(\mathrm{x} * \mathrm{y})) \geq V_{A}(\mathrm{x})$.
By Definition 2.1 (2),
it follows that $V_{A}(\mathrm{x} * \mathrm{y}) \geq \min \left(V_{A}(\mathrm{y}), V_{A}(\mathrm{y}\right.$
$\rightarrow(\mathrm{x} * \mathrm{y}))) \geq \min \left(V_{A}(\mathrm{y}), V_{A}(\mathrm{x})\right)$.
Conversely, assume that if $\mathrm{x} \leq \mathrm{y}$, then $V_{A}(\mathrm{x})$
$\leq V_{A}(\mathrm{y})$ and $V_{A}(\mathrm{x} * \mathrm{y}) \geq \min \left(V_{A}(\mathrm{x}), V_{A}(\mathrm{y})\right)$
holds. Taking $\mathrm{y}=\mathrm{I}$, we get $V_{A}(\mathrm{I})$
$\geq V_{A}(\mathrm{x})$. As x ${ }^{*}(\mathrm{x} \rightarrow$
$\mathrm{y}) \leq \mathrm{y}$, thus $V_{A}(\mathrm{y}) \geq V_{A}(\mathrm{x} *(\mathrm{x} \rightarrow \mathrm{y}))$.
Therefore $V_{A}(\mathrm{y}) \geq \min \left(V_{A}(\mathrm{x}), V_{A}(\mathrm{x} \rightarrow \mathrm{y})\right)$.
Hence A is a vague filter of L .
$=\mathrm{x} \vee(\mathrm{y} \rightarrow \mathrm{z}) \geq \mathrm{x}$, by Theorem 2.2 we have
$V_{A}((\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \geq V_{A}(\mathrm{x})$.
Therefore, $V_{A}((\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \rightarrow \mathrm{z}) \geq$ $\min \left(V_{A}(\mathrm{x}), V_{A}(\mathrm{y})\right)$.
Conversely, suppose $V_{A}((\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \rightarrow$ $\mathrm{z}) \geq \min \left(V_{A}(\mathrm{x}), V_{A}(\mathrm{y})\right)$ is valid. Since $V_{A}(\mathrm{y})=$ $V_{A}(\mathrm{I} \rightarrow \mathrm{y})=V_{A}(((\mathrm{x} \rightarrow \mathrm{y}) \rightarrow(\mathrm{x} \rightarrow \mathrm{y})) \rightarrow \mathrm{y})$ $\geq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)$.

Hence by Definition
2.1, A is s vague filter of L .

Theorem 2.8:

Let A be a vague set on L. Then A is a vague filter of L, for any $x, y, z \in L, A$ satisfies Definition 2.1(1) and $V_{A}(\mathrm{x} \rightarrow \mathrm{z}) \geq$ $\min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{y} \rightarrow \mathrm{z})\right)$.

Proof:

Assume that A is vague filter of L. Since $(\mathrm{x} \rightarrow \mathrm{y}) \leq(\mathrm{y} \rightarrow \mathrm{z}) \rightarrow(\mathrm{x} \rightarrow \mathrm{z})$, it follows from Theorem 2.2 that $V_{A}((\mathrm{y} \rightarrow \mathrm{z}) \rightarrow(\mathrm{x} \rightarrow$ $\mathrm{z})) \geq V_{A}(\mathrm{x} \rightarrow \mathrm{y})$. As A is a vague filter, so $V_{A}(\mathrm{x} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{y} \rightarrow \mathrm{z}), V_{A}((\mathrm{y} \rightarrow \mathrm{z}) \rightarrow(\mathrm{x}\right.$ $\rightarrow \mathrm{z}))$). We have $V_{A}(\mathrm{x} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{y} \rightarrow\right.$ z), $V_{A}(\mathrm{x} \rightarrow \mathrm{z})$).

Conversely, if $V_{A}(\mathrm{x} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{x}\right.$ $\rightarrow \mathrm{y}), V_{A}(\mathrm{y} \rightarrow \mathrm{z})$) for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{L}$, then $V_{A}(\mathrm{I} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{I} \rightarrow \mathrm{y}), V_{A}(\mathrm{y} \rightarrow \mathrm{z})\right)$ that is $V_{A}(\mathrm{z}) \geq \min \left(V_{A}(\mathrm{y}), V_{A}(\mathrm{y} \rightarrow \mathrm{z})\right)$. Hence by definition 2.1 A is a vague filter of L .

Theorem 2.9:

Let A be a vague set on L. Then A is a vague filter of L, if and only if, for any α, $\beta \in[0,1]$ and $\alpha+\beta \leq 1$, the sets $U\left(t_{A}, \alpha\right)$ $(\neq \varphi)$ and $\mathrm{L}\left(1-f_{A}, \beta\right)(\neq \varphi)$ are filters of L , where $\mathrm{U}\left(t_{A}, \alpha\right)=\left\{\mathrm{x} \in \mathrm{L} / t_{A}(\mathrm{x}) \geq \alpha\right\}, \mathrm{L}(1-$ $\left.f_{A}(\mathrm{x}), \beta\right)=\left\{\mathrm{x} \in \mathrm{L} / 1-f_{A}(\mathrm{x}) \geq \beta\right\}$.

Proof:

Assume A is a vague filter of L , then $V_{A}(\mathrm{I})$ $\geq V_{A}(\mathrm{x})$. By the condition $\mathrm{U}\left(t_{A}, \alpha\right) \neq \varphi$, it follows that there exist a $\in \mathrm{L}$ such that $t_{A}(\mathrm{a})$ $\geq \alpha$, and so $t_{A}(\mathrm{I}) \geq \alpha$, hence $\mathrm{I} \in \mathrm{U}\left(t_{A}, \alpha\right)$ Let $\mathrm{x}, \mathrm{x} \rightarrow \mathrm{y} \in \mathrm{U}\left(t_{A}, \alpha\right)$, then $t_{A}(\mathrm{x}) \geq \alpha$, $t_{A}(\mathrm{x} \rightarrow \mathrm{y}) \geq \alpha$. Since
A is a filter of L , then $t_{A}(\mathrm{y}) \geq \min \left(t_{A}(\mathrm{x})\right.$, $\left.t_{A}(\mathrm{x} \rightarrow \mathrm{y})\right) \geq \min (\alpha, \alpha)=\alpha$.

Hence $y \in U\left(t_{A}, \alpha\right)$. Therefore $\mathrm{U}\left(t_{A}, \alpha\right)$ is a filter of L . We will show that $\mathrm{L}\left(1-f_{A}(\mathrm{x}), \beta\right)$ is a filter of L . Since A is a vague filter of L , then 1- $f_{A}(\mathrm{I}) \geq$ 1- $f_{A}(\mathrm{x})$. By the condition $\mathrm{L}\left(1-f_{A}(\mathrm{x}), \beta\right) \neq \varphi$, it follows that there exist $\mathrm{a} \in \mathrm{L}$ such that 1 $f_{A}($ a $) \geq \beta$. Therefore we have 1- $f_{A}(\mathrm{I}) \geq 1$ $f_{A}(\mathrm{a}) \geq \beta$.
β). Hence $I \in L\left(1-f_{A}(x)\right.$, $\in \mathrm{L}\left(1-f_{A}(\mathrm{x}), \beta\right)$, then $1-f_{A}(\mathrm{x}) \geq \beta$, 1- $f_{A}(\mathrm{x}$ $\rightarrow \mathrm{y}) \geq \beta$. Since A is a vague filter of L , then 1- $f_{A}(\mathrm{y}) \geq \min \left(1-f_{A}(\mathrm{x}), 1-f_{A}(\mathrm{x} \rightarrow \mathrm{y})\right) \geq$ $\min (\beta, \beta)=\beta$. It follows that $1-f_{A}(y) \geq \beta$, hence $\mathrm{y} \in \mathrm{L}\left(1-f_{A}(\mathrm{x}), \beta\right)$. Therefore $\mathrm{L}(1-$ $\left.f_{A}(\mathrm{x}), \beta\right)$ is a filter of L . Conversely, suppose that $\mathrm{U}\left(t_{A}, \alpha\right) \neq \varphi$ and $\mathrm{L}\left(1-f_{A}(\mathrm{x}), \beta\right)$ $\neq \varphi$ are filters of L, then, for any $x \in L, x \in$ $\mathrm{U}\left(t_{A}, t_{A}(\mathrm{x})\right)$ and $\mathrm{x} \in \mathrm{L}\left(1-f_{A}, 1-f_{A}(\mathrm{x})\right)$.
$\mathrm{By} \mathrm{U}\left(t_{A}, t_{A}(\mathrm{x})\right) \neq \varphi$ and $\mathrm{L}(1-$ $\left.f_{A}, 1-f_{A}(\mathrm{x})\right) \neq \varphi$ are filters of L , it follows
that $\mathrm{I} \in \mathrm{U}\left(t_{A}, t_{A}(\mathrm{x})\right)$ and $\mathrm{I} \in \mathrm{L}\left(1-f_{A}, 1-\right.$ $\left.f_{A}(\mathrm{x})\right)$, and so $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$. For any $\mathrm{x}, \mathrm{y} \in$ L , let $\alpha=\min \left(t_{A}(\mathrm{x}), t_{A}(\mathrm{x} \rightarrow \mathrm{y})\right)$ and $\beta=\min$ (1- $f_{A}(\mathrm{x}), 1-f_{A}(\mathrm{x} \rightarrow \mathrm{y})$), then $\mathrm{x}, \mathrm{x} \rightarrow \mathrm{y} \in$ $\mathrm{U}\left(t_{A}, \alpha\right)$ and $\mathrm{x}, \mathrm{x} \rightarrow \mathrm{y} \in \mathrm{L}\left(1-f_{A}, \beta\right)$. And so $\mathrm{y} \in \mathrm{U}\left(t_{A}, \alpha\right)$ and $\mathrm{y} \in \mathrm{L}\left(1-f_{A}(\mathrm{x}), \beta\right)$.

Therefore $t_{A}(\mathrm{y}) \geq \alpha=\min \left(t_{A}(\mathrm{x}), t_{A}(\mathrm{x}\right.$
$\rightarrow \mathrm{y})$) and
$f_{A}(\mathrm{y}) \geq \beta=\min \left(1-f_{A}(\mathrm{x}), 1-f_{A}(\mathrm{x} \rightarrow \mathrm{y})\right)$. From theorem 3.2, we have A is a vague filter of L.

Theorem 2.10:

Let A, B be two vague filters of L , then $A \cap B$ is also a vague filter of L.

Proof:

Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{L}$ such that $\mathrm{z} \leq \mathrm{x} \rightarrow \mathrm{y}$, then z $\rightarrow(x \rightarrow y)=I$. Since A, B be two vague filters of L , we have $V_{A}(\mathrm{y}) \geq \min \left(V_{A}(\mathrm{z})\right.$, $\left.V_{A}(\mathrm{x})\right)$ and $V_{B}(\mathrm{y}) \geq \min \left(V_{B}(\mathrm{z}), V_{B}(\mathrm{x})\right)$. Since $V_{A \cap B}(\mathrm{y}) \quad=\quad \min \left(V_{A}(\mathrm{y}), \quad V_{B}(\mathrm{y})\right) \geq$ $\min \left(\min \left(V_{A}(\mathrm{z}), V_{A}(\mathrm{x})\right), \min \left(V_{B}(\mathrm{z}), V_{B}(\mathrm{x})\right)\right)=$ $\min \left(\min \left(V_{A}(\mathrm{z}), V_{B}(\mathrm{z})\right), \min \left(V_{A}(\mathrm{x}), V_{B}(\mathrm{x})\right)=\right.$ $\min \left(V_{A \cap B}(\mathrm{z}), V_{A \cap B}(\mathrm{x})\right)$. Since A, B be two vague filters of L , we have $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$ and $V_{B}(\mathrm{I}) \geq V_{B}(\mathrm{x})$. Hence $V_{A \cap B}(\mathrm{I})=\min \left(V_{A}(\mathrm{I})\right.$, $\left.V_{B}(\mathrm{I})\right) \geq \min \left(V_{A}(\mathrm{x}), V_{B}(\mathrm{x})\right)=V_{A \cap B}(\mathrm{x})$. Then $A \cap B$ is a vague filters of L.

Remark 2.11:

Let A_{i} be a family of vague sets on L , where i is an index set. Denoting C by the intersection of A_{i}, i.e. $\bigcap_{i \in I} A_{i}$, where $V_{C}(\mathrm{x})$ $=\min \left(V_{A_{1}}(\mathrm{x}), V_{A_{2}}(\mathrm{x}), \ldots \ldots\right)$ for any $\mathrm{x} \in \mathrm{L}$.
Note 2.12:
Let A_{i} be a family of vague filters of L , where $\mathrm{i} \in \mathrm{I}$, I is an index set, then $\bigcap_{i \in I} A_{i}$ is also a vague filters of L .

Theorem 2.13:

Let A be a vague set on L. Then
a. For any $\alpha, \beta \in[0,1]$, if $A_{(\alpha, \beta)}$ is a filter of L. Then, for any $x, y, z \in L$,
$V_{A}(\mathrm{z}) \leq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)$ imply $V_{A}(\mathrm{z}) \leq V_{A}(\mathrm{y})$.
b. If A satisfy Definition $2.1(1)$ and condition (a), then, for any $\alpha, \beta \in[0$, 1], $A_{(\alpha, \beta)}$ is a filter of L .

Proof:

a. Assume that $A_{(\alpha, \beta)}$ is a filter of L for any $\alpha, \beta \in[0,1]$.
Since $V_{A}(\mathrm{z}) \leq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y})\right.$, $V_{A}(\mathrm{x})$), it follows that $V_{A}(\mathrm{z}) \leq V_{A}(\mathrm{x}$ $\rightarrow \mathrm{y}), V_{A}(\mathrm{z}) \leq V_{A}(\mathrm{x})$.Therefore, x $\rightarrow \quad \mathrm{y} \quad \in A_{\left(t_{A}(\mathrm{z}), 1-f_{A}(\mathrm{z})\right), \quad \mathrm{x}}$ $\in A_{\left(t_{A}(\mathrm{z}), 1-f_{A}(\mathrm{z})\right)} . \operatorname{As} V_{A}(\mathrm{z}) \in[0$, 1], and $A_{\left(t_{A}(\mathrm{z}), 1-f_{A}(\mathrm{z})\right)}$ is a filter of L , so $\mathrm{y} \in A_{\left(t_{A}(\mathrm{z}), 1-f_{A}(\mathrm{z})\right)}$. Thus $V_{A}(\mathrm{z}) \leq V_{A}(\mathrm{y})$.
b. Assume A satisfy (a) and (b). For any $x, y \in L, \alpha, \beta \in[0,1]$, we havex $\rightarrow \mathrm{y} \in A_{(\alpha, \beta)}, \quad \mathrm{x}$ $\in A_{(\alpha, \beta)}$, therefore $t_{A}(\mathrm{x} \rightarrow \mathrm{y}) \geq \alpha$, 1- $f_{A}(\mathrm{x} \rightarrow \mathrm{y}) \geq \beta$ and $t_{A}(\mathrm{x}) \geq \alpha, 1-$ $f_{A}(\mathrm{x}) \geq \beta$, and $\operatorname{so} \min \left(t_{A}(\mathrm{x} \rightarrow \mathrm{y})\right.$, $\left.t_{A}(\mathrm{x})\right) \geq \min (\alpha, \alpha)=\alpha$. By (a), we have $t_{A}(\mathrm{y}) \geq \alpha$ and $\quad 1$ -
$f_{A}(\mathrm{y}) \geq \beta$, that is, $\mathrm{y} \in A_{(\alpha, \beta)}$. Since $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$ for any $\mathrm{x} \in$ L , it follows that $t_{A}(\mathrm{I}) \geq \alpha$ and 1$f_{A}(\mathrm{I}) \geq \beta$, that is, $\mathrm{I} \in A_{(\alpha, \beta)}$. Then for any $\alpha, \beta \in[0,1], A_{(\alpha, \beta)}$ is a filter of L.

Theorem 2.14:

Let A be a vague filter of L, then for any α, $\beta \in[0,1], A_{(\alpha, \beta)}(\neq \varphi)$ is a filter of L .

Proof:

Since $A_{(\alpha, \beta)} \neq \varphi$, there exist $\alpha, \beta \in[0,1]$ such that $t_{A}(\mathrm{x}) \geq \alpha, 1-f_{A}(\mathrm{x}) \geq \beta$. And A is a vague filter of L , we have $t_{A}(\mathrm{I}) \geq t_{A}(\mathrm{x}) \geq \alpha$, 1- $f_{A}(\mathrm{I}) \geq 1-f_{A}(\mathrm{x}) \geq \beta$, therefore $\mathrm{I} \in A_{(\alpha, \beta)}$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{L}$ and $\mathrm{x} \in A_{(\alpha, \beta)}, \mathrm{x} \rightarrow \mathrm{y} \in A_{(\alpha, \beta)}$, therefore $t_{A}(\mathrm{x}) \geq \alpha, 1-f_{A}(\mathrm{x}) \geq \beta, t_{A}(\mathrm{x} \rightarrow \mathrm{y})$
$\geq \alpha, 1-f_{A}(\mathrm{x} \rightarrow \mathrm{y}) \geq \beta$. Since A is a vague filter of L , thus $t_{A}(\mathrm{y}) \geq \min \left(t_{A}(\mathrm{x} \rightarrow \mathrm{y})\right.$,
$\left.t_{A}(\mathrm{x})\right) \geq \alpha$ and $1-f_{A}(\mathrm{y}) \geq \min \left(1-f_{A}(\mathrm{x} \rightarrow \mathrm{y}), 1-\right.$ $\left.f_{A}(\mathrm{x})\right) \geq \beta$, it follows that $\mathrm{y} \in A_{(\alpha, \beta)}$.
Therefore, $A_{(\alpha, \beta)}$ is a filter of L.

Remark 2.15:

From Theorem 2.14, the filter $A_{(\alpha, \beta)}$ is also called a vague - cut filter of L .

Theorem 2.16:

Any filter F of L is a vague -cut filter of some vague filter of L .

Proof:

Consider the vague set A of L :
$\mathrm{A}=\left\{\left(\mathrm{x}, t_{A}(\mathrm{x}) / \mathrm{x} \in \mathrm{L}\right\}\right.$, where If $\mathrm{x} \in$ $\mathrm{F}, V_{A}(\mathrm{x})=\alpha$. If $\mathrm{x} \notin \mathrm{F}, V_{A}(\mathrm{x})=0$. where $\alpha \in$ $[0,1]$. Since F is a filter of L, we have $1 \in$ F. Therefore $V_{A}(\mathrm{I})=\alpha \geq V_{A}(\mathrm{x})$. For any x, y $\in \mathrm{L}$, if $\mathrm{y} \in \mathrm{F}$, then $V_{A}(\mathrm{y})=\alpha=\min (\alpha, \alpha) \geq$ $\min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)$. If $\mathrm{y} \notin \mathrm{F}$, then $\mathrm{x} \notin$ F or $\mathrm{x} \rightarrow \mathrm{y} \notin \mathrm{F}$. And so $V_{A}(\mathrm{y})=0=\min (0$, $0)=\min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)$. Therefore A is a vague filter of L.

Theorem 2.17:

Let A be a vague filter of L. Then $F=\{x \in$ $\left.\mathrm{L} / t_{A}(\mathrm{x})=t_{A}(\mathrm{I}), 1-f_{A}(\mathrm{x})=1-f_{A}(\mathrm{I})\right\}$ is a filter of L.

Proof:

Since $\mathrm{F}=\left\{\mathrm{x} \in \mathrm{L} / t_{A}(\mathrm{x})=t_{A}(\mathrm{I}), 1-f_{A}(\mathrm{x})=1-\right.$ $\left.f_{A}(\mathrm{I})\right\}$, obviously $\mathrm{I} \in \mathrm{F}$. Let $\mathrm{x} \rightarrow \mathrm{y} \in \mathrm{F}, \mathrm{x} \in$ F , so $V_{A}(\mathrm{x} \rightarrow \mathrm{y})=V_{A}(\mathrm{x})=V_{A}(\mathrm{I})$. Therefore $V_{A}(\mathrm{y}) \geq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)=V_{A}(\mathrm{I})$ and $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{y})$, then $V_{A}(\mathrm{y})=V_{A}(\mathrm{I})$. Thus $\mathrm{y} \in \mathrm{F}$. It follows that F is a filter of L .

Case 1: $(\mathrm{x}=1)$. We have $V_{C} \wedge V_{A \cup B}(1)=$ $V_{C}(1) \wedge V_{A} V_{B} \tilde{*} V_{B}^{V_{A}} \quad(1)=V_{C}(1) \wedge\left(V_{A}(1)\right.$ $\left.\vee V_{B}(1)\right)=\left(V_{C}(1) \wedge\left(V_{A}(1)\right) \vee\left(V_{C}(1) \wedge\left(V_{B}(1)\right)\right.\right.$ $=\left(V_{C} \wedge V_{A}\right)^{V_{C} \wedge V_{B}} \tilde{\not}\left(\left(V_{C} \wedge V_{B}\right)^{V_{C} \wedge V_{A}}(1)\right.$.

Case 2: $(x \neq 1)$.

$\left.\left.V_{B}\right)^{V_{C} \wedge V_{A}}(\mathrm{q} \vee \mathrm{x})\right\} \vee \quad\left[\left(V_{C} \wedge V_{\mathrm{Lt}}\right)^{V_{C} \wedge} \mathrm{~K}_{\mathrm{B}}(\mathrm{dd}) \quad \wedge\right.$ that $\quad V_{C}(\mathrm{x}) \wedge$ $\left(V_{C} \wedge V_{A}\right)(\mathrm{p} \vee \mathrm{x})=\left[\left(V_{C} \wedge V_{B}\right)^{V_{C} \wedge V_{A}}(1) \wedge\right.$ $\left.\left(V_{C} \wedge V_{B}\right)(\mathrm{q} \quad \vee \quad \mathrm{x})\right]$ $=\mathrm{V}_{p * q \leq x}\left\{\left(V_{C} \wedge V_{A}\right)^{V_{C} \wedge V_{B}}(\mathrm{p} \vee \mathrm{x})\right.$ $\left.\wedge\left(V_{C} \wedge V_{B}\right)^{V_{C} \wedge V_{A}}(\mathrm{q} \vee \mathrm{x})\right\}$.

CONCLUSION:

In this paper, we introduced the concept of vague filters and we discuss some properties of Vague filters in terms of its level subsets. Also by introducing the notion of extended vague filters, it is proved that the set of all vague filters forms a bounded distributive lattice.

References:

1.W.L. Gau and BuehrerD.J.Vague sets, IEEE Transactions on systems, Man and

Cybernetics 23 (1993) 610-614.
2. S. Ghorbani, Intuitionistic fuzzy filters of residuated lattices, New Mathematics and

Natural Computation 7 (2011) 499-513.
3. S. Ghorbani, Intuitionistic fuzzy congruence relations on residuated lattices, Acta

Universities Apulensis 29 (2012) 301-314.
4. Y. B. Jun, W. H. Shim, Fuzzy strong implicative hyper BCK-ideals of of hyper

BCK-algebras, Inform. Sci. 170 (2005) 351-361.
5. Y. B. Jun, Fuzzy positive implicative and fuzzy associative filters of lattice implication algebras, Fuzzy Sets, Syst. 121 (2001) 353-357.
6. Y. B. Jun, S.Z. Song, On fuzzy implicative filters of lattice implication algebras, J.

Fuzzy Math. 10 (2002) 893-900.
7. Y. B. Jun, Y. Xu, J. Ma, Redefined fuzzy implication filters, Inform. Sci. 177 (2007)

1422-1429.
8. H. Kham, M. Ahamd, R. Biswas, Vague relations, Int.J.Comput.Cognition 5(2007)31-
35.
9. Y. Liu, J. Liu, Y. Xu, Fuzzy congruence theory of lattice implication algebras,

Special Issue on Proceedings of International Conference on Materials Manufacturing and Nanotechnology, June 2021. International Journal of Aquatic Science, Vol 12, Issue 03, 2021
J.Fuzzy Math. 20 (2012) 777-790.
10. Y. Liu, Y. Xu, X.Y. Qin, Interval-valued T-Fuzzy Filters and Interval-valued T-Fuzzy

Congruences on Residuated Lattices, Journal of Intelligent and Fuzzy Systems
DOI :10.3233/ IFS-130879.
11.M. Bakhshi, R.A. Boaraooei, Fuzzy regular congruence relation on Hyper K-algebras, Southeast Asian Bull.Math. 33 (2009) 209-220.

12 M. Bakhshi, R.A.Boraooei, Lattice structure on fuzzy congruence relations of a hypergroupoid, Inform. Sci. 177 (2007) 3305-3313
13. R. Biswas, Vague Groups, Int. J. Comput. Cognition 4 (2006) 20-23.
14. S.W.Chen, Y. Xu, Y. B. Jun, Intuitionistic fuzzy filters in Lattice Implication Algebra, The Journal of Fuzzy Mathematics 14 (2006) 385-392.
15.T. Eswarlal, Vague ideals and normal vague ideals in semirings, Int. J. Comput.

Cognition 6(2008) 60-65.

