Special Issue on Proceedings of International Conference on Newer Trends and Innovation in Nanotechnology, Materials Science, Science and Technology March 2021. International Journal of Aquatic Science, Vol 12, Issue

A sα- CLOSED SETS IN TOPOLOGICAL SPACES

E.Balaji., K. Senthamiselvi, R.ManoRanjini, Kavitha R & M.Nagarajan

Nehru Institute of Technology

nitbalaji@nehrucolleges.com

Abstract:

In this paper, we introduce $s\alpha$ -closed sets in topological spaces. Properties of these sets are investigated and we introduce six new topological spaces namely, (i,j)- T^{α} , (i,j)- T^{α} , (i,j)- T^{α} , (i,j)- T^{α} spaces as applications. Further, we introduce and study (i,j)- $s\alpha$ -continuous and (i,j)- $s\alpha$ -irresolute maps.

Key Words: (i,j)-s α -closed sets, (i,j)- T^{\sim} , (i,j)- T^{\sim} , (i,j)- T^{\sim} , (i,j)- T^{α} , (i,j)- T^{α} spaces, (i,j)-s α -continuous and (i,j)-s α -irresolute maps.

Introduction:

A triple (X, τ_1, τ_2) where X is a nonempty set and τ_1 and τ_2 are topologies on X is called a Kellv initiated study topological space and the of such Levine introduced and studied semi-open sets and generalized closed sets in 1963 and 1970 respectively. S.P. Arya and T. Nourdefined generalized semi-closed sets (briefly gs-closed sets) in 1990 for obtaining some characterizations of s-normal spaces. Njåstadand Abd El-Monsef et. al introduced α -sets (called as α -closed sets) and semi-preopen sets respectively. Semi-preopen sets are also known as β -sets. Maki et.al. introduced generalized α -closed sets (briefly $g\alpha$ -closed sets)and α -generalized closed sets (briefly αg -closed sets)in 1993 and 1994 respectively.

2. PREREQUISITES

Throughout this paper (X, τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, η_1, η_2) represent non-empty b topological spaces on which no separation axioms are assumed unless otherwise mentioned. If A is a subset of X with topology τ then cl(A), int(A) and C(A) denote the closure of A, the interior of A and the complement of A in X respectively. We recall the following definitions, which will be used often throughout this paper.

DEFINITION 2.1:

A subset A of a space (X, τ) is called

- (1) a preopensetif $A \subseteq int(cl(A))$ and a preclosed set if $cl(int(A)) \subseteq A$.
- (2) a semi-open set if $A \subset cl(int(A))$ and a semi-closed set if $int(cl(A)) \subset A$.
- (3) an α -open setif $A \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$ and a α -closed set if $\operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))) \subset A$.
- (4) a semi-preopen set (= β -open) if $A \subseteq cl(int(cl(A)))$ and a semi-preclosed set (= β -closed) if $int(cl(int(A))) \subseteq A$.

The semi-closure (resp. α -closure) of a subset A of (X, τ) is denoted by scl(A) (resp. $\alpha cl(A)$ and spcl(A)) and is the intersection of all semi-closed (resp. α -closed and semi-preclosed) sets containing **A**.

DEFINITION 2.2:

Special Issue on Proceedings of International Conference on Newer Trends and Innovation in Nanotechnology, Materials Science, Science and Technology March 2021. International Journal of Aquatic Science, Vol 12, Issue

A subset A of a space (X, τ) is called

- (1) a generalized closed (briefly g-closed) set²[10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (2) a generalized semi-closed (briefly gs-closed) set³[3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (3) a generalized semi-preclosed (briefly gsp-closed) set $^{12}[9]$ if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (4) an α -generalized closed (briefly αg -closed) set⁸[12] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (5) a generalized α -closed (briefly $g\alpha$ -closed) set⁷[13] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).

DEFINITION 2.3:A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is called

- (1) *semi-continuous*¹[11] if $f^{-1}(V)$ is semi-open in (X, τ) for every open set V of (Y, σ) .
- (2) **pre-continuous**¹¹[14] if $f^{-1}(V)$ is pre-closed in (X, τ) for every closed set V of (Y, σ) .
- (3) α -continuous¹²[15] if $f^{-1}(V)$ is α -closed in (X, τ) for every closed set V of (Y, σ) .
- (4) β -continuous⁵[1] if f⁻¹(V) is semi-preopen in (X, τ) for every open set V of (Y, σ).
- (5) **g-continuous**¹³[4] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ) .

DEFINITION 2.4:

A topological space (X, τ) is said to be

- 1.a $T_{1/2}$ spaceif every g-closed set in it is closed.
- 2.a T_b space if every gs-closed set in it is closed.

3.an $_{\alpha}T_{b}$ space if every αg -closed set in it is closed.

DEFINITION 2.5: A subset A of a topological space (X, τ_1, τ_2) is called:

- 1.(i,j)-g-closed if τ_i -cl(A) \subseteq U whenever A \subseteq U and U is open in τ_i
- .2(i,j)-g*-closed if τ_i -cl(A) \subseteq U whenever A \subseteq U and U is g-open in τ_i
- 3.(i,j)-rg-closed if τ_i -cl(A) \subset U whenever A \subset U and U is regular open in τ_i
- 4. (i,j)-gpr-closed if τ_i -pcl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_i

The family of all (i,j)-g-closed sets (resp. (i,j)-g*-closed, (i,j)-rg-closed, (i,j)-gpr-closed) subsets of a topological space (X, τ_1, τ_2) is denoted by D(i, j) (resp. $D^*(i, j)$, $D_r(i, j)$, E(i, j)).

DEFINITION 2.6:

A subset A of a topological space (X, τ_1, τ_2) is called:

- 1.(i,j)- $T_{1/2}$ spaceif every (i,j)-g-closed sets is τ_i closed.
- 2. (i,j)-T_b space if every (i,j)-gs-closed set is τ_i closed.
- 3.(i,j)- αT_b space if every (i,j)- αg -closed set is τ_i closed.

DEFINITION 2.7:

A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is called

- (1) τ_j semi-continuous 1 [11] if $f^{-1}(V)$ is semi-open in (X, τ_1, τ_2) for every open set V of (Y, σ_1, σ_2) .
- (2) τ_{j^-} α -continuous 12 [15] if $f^{-1}(V)$ is α -closed in (X, τ_1, τ_2) for every closed set V of (Y, σ_1, σ_2) .
- (3) τ_{j} σ_{k} continuous if $f^{-1}(V) \in \tau_{j}$, for every $V \in \sigma_{k}$.
- (4)(i,j)-gs-continuous¹⁴[7] if $f^{-1}(V)$ is gs-closed in (X,τ_1, τ_2) , for every closed set V of (Y, σ_1, σ_2) .
- (5) (i,j)-gsp-continuous ¹⁴[7] if $f^{-1}(V)$ is gsp-closed in $(X,\tau_1,\tau_2,)$ for every closed set V of (Y,σ_1,σ_2) .

3. $s\alpha$ –closed sets in topological spaces

Special Issue on Proceedings of International Conference on Newer Trends and Innovation in Nanotechnology, Materials Science, Science and Technology March 2021. International Journal of Aquatic Science, Vol 12, Issue

In this section we introduce the concept of $s\alpha$ -closed sets in topological spaces and discuss the related properties.

Definition 3.1: A Subset A of a space (X, τ_i, τ_j) is called a (i,j)-s α -closed set if τ_j -scl $(A)\subseteq U$ whenever $A\subset U$ and U is α -open in τ_i

Remark 3.2: By setting $\tau_i = \tau_j$ in Definition 3.1, a (i,j)-s α -closed set is a s α -closed set. **Theorem 3.3:**

- 1. If A is τ_i closed subset of (X, τ_i, τ_i) then A is (i,j)-s α -closed.
- 2. If A is τ_i –semi closed subset of (X,τ_i,τ_i) then A is (i,i)-s α -closed.
- 3. If A is $\tau_i \alpha$ closed subset of (X, τ_i, τ_i) then A is (i, j)-s α -closed.
- **4.** Every (i,j)-ga-closed set is (i,j)-sa-closed.
- 5. Every (i,j)-w-closed set is (i,j)-s α -closed.

Proof: Straight forward. Converse of the above need not be true as in the following examples. **Example 3.4:** Let $X=\{a,b,c\}$, $\tau_1=\{\phi,X,\{a,b\}\}$, $\tau_2=\{\phi,X,\{a\}\}$ then $\{b\}$ is (1,2)-s α -closed but not τ_2 -closed.

Example 3.5: Let $X=\{a,b,c\}$, $\tau_1=\{\phi,X,\{a,b\}\}$, $\tau_2=\{\phi,X,\{a\}\}$ then $\{a,c\}$ is (1,2)-s α - closed but not τ_2 -semi closed **.Example 3.6:** Let $X=\{a,b,c\}$, $\tau_1=\{\phi,X,\{a\},\{b,c\}\}$, $\tau_2=\{\phi,X,\{a\},\{a,c\}\}$ then $\{a,b\}$ is (1,2)-s α -closed but not τ_2 - α -closed

Example 3.7: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi,X,\{a\}\}$, $\tau_2 = \{\phi,X,\{a\},\{b\}\}$ then $\{a\}$ is (1,2)-s α -closed but not (1,2)-g α -closed.

Example 3.8: Let $X=\{a,b,c\}$, $\tau_1=\{\phi,X,\{a,b\}\}$, $\tau_2=\{\phi,X,\{a\}\}$ then $\{b\}$ is (1,2)-s α -closed but not (1,2) -w-closed.

Thus the class of (i,j)-s α -closed sets properly contains the classes of τ_j -closed sets, τ_j - α -closed sets, τ_i -semi-closed sets, (i,j)-g α -closed sets, (i,j)-w-closed sets.

- (6) gs-continuous ¹⁴[7] if $f^{-1}(V)$ is gs-closed in (X, τ) for every closed set V of (Y, σ) .
- (7) αg -continuous²[10] if $f^{-1}(V)$ is αg -closed in (X, τ) for every closed set V of (Y, σ) .
- (8) $g\alpha$ -continuous⁷[13] if f⁻¹(V) is gα-closed in (X, τ) for every closed set V of (Y, σ).
- (9) gsp-continuous ¹⁶[9] if $f^{-1}(V)$ is gsp-closed in (X, τ) for every closed set V of (Y, σ) .
- (10) αg -irresolute $^{10}[6]$ if $f^{-1}(V)$ is αg -closed in (X, τ) for every αg -closed set V of (Y, σ) .
- (11) pre-semi-open ¹⁵[5] if f(U) is semi-open in (Y, σ) for every semi-open set U in (X, τ) .

Theorem 3.9: In a topological space (X, τ_i, τ_i) , every (i,j)-s α -closed set is :

- 1.(i,j)-gs-closed and
- 2.(i,j)-gsp-closed.

Proof: follows from the definitions.

The following examples show that the reverse implications of above proposition are not true.

Example 3.10: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi,X,\{a\},\{a,c\}\}\}$, $\tau_2 = \{\phi,X,\{a\},\{b,c\}\}\}$ then $\{b\}$ is (1,2)-gs-closed but not (1,2)-s α -closed.

Example 3.11: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b,c\}\}$ then $\{b\}$ is (1,2)-gsp-closed but not (1,2) -s α -closed.

So the class of (i,j)- sa-closed sets is properly contained in the classes of (i,j)-gs-closed and (i,j)-gsp-closed sets .

The following examples shows that (i,j)-s α -closedness is independent from (i,j)- α -closedness, (i,j)-rg-closedness, (i,j)-gp-closedness, (i,j)-gp-closedness.

Special Issue on Proceedings of International Conference on Newer Trends and Innovation in Nanotechnology, Materials Science, Science and Technology March 2021. International Journal of Aquatic Science, Vol 12, Issue

Example 3.12: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi,X,\{a\}\}$, $\tau_2 = \{\phi,X,\{a\},\{b\},\{a,b\}\}$ then the set $\{a,b\}$ is (1,2)- αg -closed set, (1,2)-rg-closed set, (1,2)-gp-closed set, (1,2)-gp-closed set but not (1,2)-s α -closed.

Proposition 3.13: If A is (i,j)-sa-closed set such that $A \subseteq B \subseteq \tau_j$ -Scl(A) then B is also (i,j)-sa-closed

Proof: Follows

Proposition 3.14: If A is (i,j)-s α -closed then τ_j -Scl(A) – A contains no non-empty τ_i - α -closed set.

Proof: Let A be an (i,j)-s α -closed set and F be a non-empty τ_i - α -closed subset such that $F \subseteq \tau_j$ -Scl(A) - A = τ_j -Scl(A) \cap A c \therefore $F \subseteq \tau_j$ -Scl(A) and $F \subseteq$ A c Since F^c is τ_i - α -open and A is (i,j)-s α -closed we have, τ_j -Scl(A) \subseteq F^c i.e $F \subseteq (\tau_j$ -Scl(A)) c Hence $F \subseteq \tau_j$ -Scl(A) $\cap (\tau_j$ -Scl(A)) c = φ

 $\therefore \tau_i$ -Scl(A) – A contains no non-empty τ_i - α -closed set

Corollary 3.15: If A is (i,j)-s α -closed set in (X, τ_i, τ_j) , then A is τ_j -semi-closed iff τ_i -Scl(A) – A is τ_i - α -closed.

Proof:

Necessity: If A is τ_j -semi-closed then τ_j -Scl(A)=A i.e τ_j -Scl(A) – A = ϕ and hence Scl(A) – A is τ_i - α -closed. [by prop.3.14]

Sufficiency: If τ_j -Scl(A)—A is τ_i - α -closed then by proposition 3.14 we have, τ_j -Scl(A) — A = ϕ [since A is (i,j)-s α -closed] $\therefore \tau_j$ -Scl(A) = A. Hence A is τ_i – semi-closed.

Proposition 3.16: For each element x of (X, τ_i, τ_j) , $\{x\}$ is τ_i - α -closed (or) $\{x\}^c$ is (i,j)-s α -closed.

Proof: If $\{x\}$ is not τ_i - α -closed then the only τ_i - α -open set containing X- $\{x\}$ is XThus X- $\{x\}$ is (i,j)-s α -closed. i.e $\{x\}^c$ is (i,j)-s α -closed. Hence Proved.

Proposition 3.17: If A is an τ_i - α -open and (i,j)-s α -closed set of (X,τ_i,τ_j) then A is τ_j -semi-closed.Proof: Let A be τ_i - α -open and (i,j)-s α -closed. Since A is (i,j)-s α -closed, we have τ_j -scl(A) \subseteq U whenever A \subseteq U and U is τ_i - α -open $\Rightarrow \tau_j$ -scl(A) = A \Rightarrow A is τ_j -semi-closed.

Remark 3.18: An (i,j)-s α -closed set need not be (j,i)-s α -closed.Proof: Consider the Example Let $X=\{a,b,c\}$, $\tau_1=\{\phi,X,\{c\},\{a,b\}\}$, $\tau_2=\{\phi,X,\{a\}\}$ then $\{a,c\}$ is (1,2)-s α -closed but not (2,1)-s α -closed

4. Applications of (i,j)-sα-closed Set

In this chapter we introduce six new spaces namely (i,j)-T~space, (i,j)-T~space,

We now introduce a new space (i,j)-T space.

Definition 4.1: A space (X, τ_i, τ_j) is called an (i,j)-T space if every (i,j)-s α -closed set is τ_j closed.

Proposition 4.2: Every (i,j)- T_b space is an (i,j)- T^{\sim} space but not conversely.

Proof: follows

The converse of above proposition need not be true which is shown by the following example.

Example 4.3: Consider the example $X = \{a,b,c\}, \tau_1 = \{\phi,X,\{a\}\}, \tau_2 = \{\phi,X,\{a\},\{b,c\}\}\}$ then (X,τ_1,τ_2) is (1,2)-T° space but not (1,2)-T_b—space.

Special Issue on Proceedings of International Conference on Newer Trends and Innovation in Nanotechnology, Materials Science, Science and Technology March 2021. International Journal of Aquatic Science, Vol 12, Issue

Characterization of (i,j)-T~space

Theorem 4.4: If (X, τ_i, τ_j) is an (i,j)-T space, then every singleton of X is either τ_i - α -closed or τ_i -open

Proof: Let $x \in X$ and suppose that $\{x\}$ is not τ_i - α -closed. Then $X - \{x\}$ is (i,j)-s α -closed set since X is the only τ_i - α -open set containing $X - \{x\}$. So $X - \{x\}$ is τ_i -closed.(i.e) $\{x\}$ is τ_i -open

Remark 4.5: (X, τ_1) space is not generally T space even if (X, τ_1, τ_2) is (1,2)-T space shown in the following example.

Example 4.6: Consider the example $X = \{a,b,c\}, \tau_1 = \{\phi,X,\{a\}\}, \tau_2 = \{\phi,X,\{a\},\{b,c\}\}\}$ then (X,τ_1,τ_2) is (1,2)-T^{*} space but (X,τ_1) is not T^{*}-space.

We now introduce a new space (i,j)-T^{-s}

Definition 4.7: A space (X, τ_i, τ_j) is called (i,j)- T^s space if every (i,j)-s α -closed set is τ_j - semi closed.

Proposition 4.8: Every (i,j)- T_b space is an (i,j)- T^{-s} space but not conversely. Proof: follows.

Example 4.9: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi,X,\{a\}\}$, $\tau_2 = \{\phi,X,\{a\},\{b\},\{a,b\}\}$ then (X, τ_1, τ_2) is (1,2)- T^{-s} space but not (1,2)- T_b space.

Proposition 4.10: Every (i,j)- $T_{1/2}$ space is an (i,j)- T^{s} space but not conversely. Proof: follows.

Example 4.11: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi,X,\{a\}\}$, $\tau_2 = \{\phi,X,\{a\},\{b,c\}\}$ then (X, τ_1, τ_2) is (1,2)- T^{*s} space but not (1,2)- $T_{1/2}$ space.

Proposition 4.12: Every (i,j)-T^{-s} space is (i,j)-T^{-s} space but not conversely.

Proof: Follows

Example 4.13: Let $X=\{a,b,c\}$, $\tau_1=\{\phi,X,\{a\}\}$, $\tau_2=\{\phi,X,\{a\},\{b\},\{a,b\}\}$. Then (X,τ_1,τ_2) is (1,2)- T^{-s} space but not (1,2)- T^{-s} space

Characterization of (i,j)-T^{-s} space

Theorem 4.14: For a space (X, τ_i, τ_i) the following are equivalent.

- 1. (X, τ_i, τ_i) is a (i,j)- T^{-s} space
- 2. Every singleton of X is either τ_i - α -closed or τ_i -semi open.

Proof: To Prove (1) \Rightarrow (2) Let $x \in X$ and suppose that $\{x\}$ is not τ_i - α -closed. Then X- $\{x\}$ is (i,j)-s α -closed set since X is the only τ_i - α -open set containing X- $\{x\}$. Therefore X- $\{x\}$ is τ_j - semi-closed.(i.e) $\{x\}$ is τ_j - semi-open

<u>To Prove (2)</u> \Rightarrow (1)Let A be a (i,j)-s α -closed set of (X, τ_i , τ_j).Clearly A \subseteq τ_j -scl(A).Let x \in X. by (2) {x} is either τ_i - α -closed or τ_j -semi-open

<u>Case (i)</u> Suppose $\{x\}$ is τ_i - α -closed. If $x \notin A$, then $\tau_j - scl(A)$ -A contains the τ_i - α -closed set $\{x\}$ and A is (i,j)-s α -closed set. Hence we arrive at a contradiction. Thus $x \in A$.

<u>Case (ii)</u> Suppose that $\{x\}$ is τ_j - semi-open. Since $x \in \tau_j - scl(A)$, then $\{x\} \cap A \neq \emptyset$. So $x \in A$. Thus in any case $x \in A$. So $\tau_j - scl(A) \subseteq A$ \therefore $A = \tau_j - scl(A)$ (or) equivalently A is τ_j - semi-closed. Thus (X, τ_i, τ_j) is an (i,j)- T^{s} space.

Definition 4.15: A space (X, τ_i, τ_j) is called strongly pairwise T^{-s} space if it is both (1,2)- T^{-s} and (2,1)- T^{-s}

Proposition 4.16: If (X, τ_1, τ_2) is strongly pairwise T_b space then it is strongly pairwise T^s space but not conversely.

Proof: follows

Special Issue on Proceedings of International Conference on Newer Trends and Innovation in Nanotechnology, Materials Science, Science and Technology March 2021. International Journal of Aquatic Science, Vol 12, Issue

Example 4.17: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi,X,\{a\},\{a,b\}\}$, $\tau_2 = \{\phi,X,\{a\}\}$ then (X, τ_1, τ_2) is strongly pairwise T^s space but not strongly pairwise T_b space.

We introduce another new space (i,j)-T space

Definition 4.18: A space (X, τ_i, τ_j) is called (i,j)-T space if every (i,j)-s α -closed set is τ_j - α -closed

Proposition 4.19:Every (i,j)- T_b space is (i,j)-T space but not conversely.

Proof: Let (X,τ_i,τ_j) be a (i,j)- T_b space and A be a (i,j)-s α -closed set of (X,τ_i,τ_j) . Since (X,τ_i,τ_j) is a (i,j)- T_b space, A is τ_j -closed. Since every τ_j -closed set is τ_j - α -closed set. Implies A is τ_j - α -closed \therefore (X,τ_i,τ_j) is a (i,j)-T space.

Example 4.20: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi,X,\{a\},\{b\},\{a,b\}\}$, $\tau_2 = \{\phi,X\}$ then (X,τ_1,τ_2) is (1,2)- T space but not (1,2)- T_b space.

Proposition 4.21: Every (i,j)-T space is (i,j)-T space but not conversely.

Proof: follows

Example 4.22: Let $X=\{a,b,c\}$, $\tau_1=\{\phi,X,\{a\}\}$, $\tau_2=\{\phi,X,\{a\},\{b\},\{a,b\}\}$ then (X,τ_1,τ_2) is (1,2)- T^{-s} space but not (1,2)-Tspace.

Proposition 4.23:Every (i,j)-T space is (i,j)-T space but not conversely.

Proof: follows.

Example 4.24: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi,X,\{a\},\{b\},\{a,b\}\}$, $\tau_2 = \{\phi,X\}$ then (X, τ_1, τ_2) is (1,2)- T space but not (1,2)- T space.

Theorem 4.25: If (X, τ_i, τ_j) is a (i,j)- Tspace, then every singleton of X is either $\tau_i - \alpha$ -closed or $\tau_j - \alpha$ -open.Proof:Suppose that (X, τ_i, τ_j) is a (i,j)- Tspace. Suppose that $\{x\}$ is not $\tau_i - \alpha$ -closed for some $x \in X$. Then X- $\{x\}$ is not $\tau_i - \alpha$ -open.Then X is the only $\tau_i - \alpha$ -open set containing X- $\{x\}$.

So X-{x} is a (i,j)-s α -closed. Since (X, τ_i , τ_j) is a (i,j)- $^{\sim}$ Tspace, X-{x} is τ_j - α -closed or equivalently {x} is τ_i - α -open.

We now introduce a new space (i,j)-"sT space

Definition 4.26: A space (X, τ_i, τ_j) is called a (i,j)- $^{\circ}$ T space if every (i,j)-gs-closed set is (i,j)-s α -closed.

Proposition 4.27: Every (i,j)- $T_{1/2}$ space is a (i,j)- $^{\sim}$ Tspace but not conversely.Proof: Let (X, τ_i, τ_j) be a (i,j)- $T_{1/2}$ space .Let A be a (i,j)-gs-closed set. Since (X, τ_i, τ_j) is (i,j)- $T_{1/2}$ space, A is τ_j -semi-closed. Therefore A is (i,j)-s α -closed. Hence (X, τ_i, τ_j) is a (i,j)- $^{\sim}$ T space. Hence proved.

Example 4.28: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi,X,\{a,c\},\{c\}\}\}$, $\tau_2 = \{\phi,X,\{a\}\}$ then (X,τ_1,τ_2) is $(1,2)^{-s}$ Tspace but not (1,2)- $T_{1/2}$ space.

Proposition 4.29: Every (i,j)- T_b space is (i,j)- $^{\circ}$ T space but not conversely.

Proof: follows

Example 4.30: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi,X,\{c\},\{a,b\}\}$, $\tau_2 = \{\phi,X,\{a\}\}$ then (X, τ_1, τ_2) is (1,2)
*T space but not (1,2)-T_b space.

Theorem 4.31: A space (X, τ_i, τ_j) is a (i,j)- $T_{1/2}$ -space if and only if (X, τ_i, τ_j) is (i,j)- $^{\sim}$ T and (i,j)- T^{\sim} space .Proof: follows.

Special Issue on Proceedings of International Conference on Newer Trends and Innovation in Nanotechnology, Materials Science, Science and Technology March 2021. International Journal of Aquatic Science, Vol 12, Issue

Theorem 4.32: A space (X, τ_i, τ_j) is a (i,j)-T_b-space if and only if (X, τ_i, τ_j) is (i,j)- s T and (i,j)-T space .Proof: follows.

We now introduce a new space (i,j)-T^α space

Definition 4.33: A space (X, τ_i, τ_j) is called (i,j)- T^{α} space if every (i,j)-s α -closed set is (i,j)- $g\alpha$ -closed.

Proposition 4.34:Every (i,j)- T^{α} space is (i,j)- T^{α} space but not conversely.

Proof: follows

Example 4.35: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi,X,\{a\}\}$, $\tau_2 = \{\phi,X,\{c\},\{a,b\}\}$ then (X, τ_1, τ_2) is (1,2)- T^{α} space but not (1,2)- T^{α} space.

Proposition 4.36: Every (i,j)-T space is (i,j)-T space but not conversely.

Proof: follows

Example 4.37: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi,X,\{a,b\}\}$, $\tau_2 = \{\phi,X,\{c\},\{a,b\}\}$ then (X, τ_1, τ_2) is (1,2)- T^{α} space but not (1,2)-T space.

We now introduce a new space (i,j)- T^{α} -space

Definition 4.38: A space (X, τ_i, τ_j) is called (i,j)- T^{α} space if every (i,j)-s α -closed set is (i,j)-w-closed.

Proposition 4.39: Every (i,j)- T_b space is (i,j)- T^{α} -space but not conversely.

Proof: follows

Example 4.40: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi,X,\{a,b\}\}$, $\tau_2 = \{\phi,X,\{a\},\{b,c\}\}$ then (X, τ_1, τ_2) is (1,2)- T^{α} space but not (1,2)- T_b space.

Proposition 4.41: Every (i,j)- T^{α} space is (i,j)- T^{α} space but not conversely.

Proof: follows

5. sα-continuous maps in topological spaces.

We introduce the following definition.

Definition 5.1: A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called (i,j)-s\alpha -continuous if $f^{-1}(V)$ is (i,j)-s\alpha - closed set of (X, τ_1, τ_2) for every closed set V of (Y, σ_1, σ_2) .

Proposition 5.2: If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $\tau_j - \sigma_k$ —continuous then it is (i, j)- $s\alpha$ —continuous but not conversely.

Proof: follows from the definitions.

Example 5.3: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi, X, \{a,b\}\}$, $\tau_2 = \{\phi, X, \{a\}\}$ and $Y = \{p, q\}$, $\sigma_1 = \{\phi, Y, \{p\}\}$, $\sigma_2 = \{\phi, Y, \{q\}\}$. Define a map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = q, f(b) = f(c) = p. then f is (1, 2)- so g(a) = g(a)-continuous but not g(a) = g(a)-continuous.

Proposition 5.4: If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is (i,j)- s\alpha -continuous, then it is

(i,j)- gs –continuous and (i,j)- gsp –continuous but not conversely.

Proof: follows from the definitions.

Special Issue on Proceedings of International Conference on Newer Trends and Innovation in Nanotechnology, Materials Science, Science and Technology March 2021. International Journal of Aquatic Science, Vol 12, Issue

The converses are not true which is shown by the following examples.

$$\sigma_1 = \{ \phi, Y, \{ p \} \}, \sigma_2 = \{ \phi, Y, \{ q \} \}$$
. Define a map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by

$$f(a) = f(c) = q$$
, $f(b) = p$. then f is (1,2)- gs –continuous but not (1,2)- sa –continuous.

Example 5.6: Let
$$X = \{a,b,c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a\}, \{b,c\}\} \text{ and } Y = \{p,q\},$$

$$\sigma_1 = \{ \phi, Y, \{ p \} \}, \sigma_2 = \{ \phi, Y, \{ q \} \}$$
. Define a map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by

$$f(a) = f(c) = q$$
, $f(b) = p$. then f is (1,2)- gsp –continuous but not (1,2)- sa –continuous.

Remark 5.7: (i ,j)- g-continuous and (i ,j)-s α -continuous are independent which are shown by the following example. Let $X = \{a,b,c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b,c\}\}$ and $Y = \{p, q\}$,

$$\sigma_1 = \{ \phi, Y, \{ p \} \}, \sigma_2 = \{ \phi, Y, \{ q \} \}.$$
 Define a map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by

$$f(a) = f(c) = q$$
, $f(b) = p$. then f is (1,2)- g –continuous but not (1,2)- s α –continuous.

Conclusions:

In this paper we introduced the concepts of sa-closed sets, T space, T s

References

- 1.M.E.Abd El-Monsef, S.N.El-Deeb And Mahmoud, B-Open Sets And B-Continuous Mapping, Bull Fac.Sci.Assiut Univ.12(1983) 77-90
- 2.D.Andruevic, Semi-Preopen Sets, Mat. Vesnik38(1)(1986)24-32.
- 3.S.P.Arya And T.Nour, Characterizations Of S-Normal Spaces, Indian J. Pure. Appl. Math. 12(8)(1990)717-719.
- 4.K.Balachandran, P.Sundaram And H.Maki, On Generalized Continuous Maps In Topological Spaces, Mem. Fac.Sci.Kochi Univ.Ser.A.Math. 12(1991)5-13.
- 5.S.G. Crossley And S.K.Hildebrand, Semi-Topological Properties, Fund. Math. 74(1972)233-254.
- 6. M. Bakhshi, R.A.Boraooei, Lattice structure on fuzzy congruence relations of a hypergroupoid, Inform. Sci. 177 (2007) 3305-3313.
- 7. R. Biswas, Vague Groups, Int. J. Comput. Cognition 4 (2006) 20-23.
- 8. S.W.Chen, Y. Xu, Y. B. Jun, Intuitionistic fuzzy filters in Lattice Implication Algebra, The Journal of Fuzzy Mathematics 14 (2006) 385-392.
- 9. T. Eswarlal, Vague ideals and normal vague ideals in semirings, Int. J. Comput. Cognition 6 (2008) 60-65.
- 10. W.L. Gau and Buehrer D.J.Vague sets, IEEE Transactions on systems, Man and Cybernetics 23 (1993) 610-614.