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Abstract 

Every function u regular and harmonic in a region G possesses for every sphere 

S-centre P(x, yz) and radius R-lying entirely inside G the mean value property.  
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The converse of this thereon, that if U is continuous and possesses the property 

(1)  for every sphere is G then U is harmonic in G, was discovered by Bocher and 

Koebe.  In other words, the property (1) is a characteristic one for functions harmonic 

in G.  A number of conditions each of which characterises a harmonic function have 

since been given for, instance Zaremba proved.   
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1. INTRODUCTION:   
 

According to a well known theorem every function u regular and harmonic in a region 

G possesses for every sphere S-centre P(x, yz) and radius R-lying entirely inside G the mean 

value property.  
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The converse of this thereon, that if U is continuous and possesses the property (1)  

for every sphere is G then U is harmonic in G, was discovered by Bocher and Koebe.  In 

other words, the property (1) is a characteristic one for functions harmonic in G.  A number 

of conditions each of which characterises a harmonic function have since been given for, 

instance Zaremba proved that if  
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then 2u=0, the condition (1) was generalised by  Blaske2 and may be stated as follows.  A 

necessary and sufficient condition that the continuous function U be harmonic in G is  
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for  every sphere S in G. Results suitable to those G. Zarcmba and Blaschke have been  

recently  obtained by  Kappos2.  Saks4 has used Blaschke’s  theorem to derive two other 

properties either of which may be regarded as the defining property of harmonic  functions.  

in this paper it will be shown that results analogoes to those of Blaschke and saks may be 

obtained for solutions of poisson’s equation and also of the equation 2u + Cu = 0.  The 

following results are obtained.  
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 then  2u + 4 = 0 
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The first reduces to Blaschke’s Théorem  for  = 0 and the second is the convers of a 

mean value theorem due to weber5.  Making the same use of theorem I and II as saks has 

done of Blaschke’s theorem, the following further results are obtained. 
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then  2u + 4 = 0  

IV.  Let 2V = 0 and V  0, Then if  
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 The theorems III  and IV correspond to those of saks, to which they reduce when  = 

0/  The restrictions imposed  on the functions, u, ,f in the theorems are mentioned below, in 

the proper contexts. 

2. Lemma 

 Let P(x, y, z) be an interior point of G and let the function  (x, y, z, r) =  (p;r) 

satisfy the conditions : (I)  (x, y, z, r) is continuous  in all its, arguments, and (II) 
or 
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In fact we may choose axes so that pp1 is  parallel to the axis.  Let (x, y, z + h) be the 

co-ordinates of P1  

Then – 
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 Since  (P ; r)  0 as r  0.  We can find ro such that 1 (p : r) |  
2

2h
   for r < ro and 

since  (p : r) =  (x, y, z, r) is continuous in all its arguments continuity will be uniform.  

then ro will depend upon h only ro  ro (h), and the above inequality will hold also for  (p’ : 

r) with same ro.  Since the upper limit a in J(P) is arbitrary  we may choose it so hat a <ro (h).  

we then have    
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This proves the Lemma. i am not aware of the proof given by Blaschke of his  

theorem, but it must be noticed that his theorem is an immediate consequence of our Lemma.  

For writing,  
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 so that if u is continuous,   satisfies the conditions of the Lemma. 

We then have u (P) =   
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(K is the volume inside a sphere of rad, a and  centre P.) = I(P) – J (P) 

To calculate  
Z
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 for instance, we take P1(x, y, z + h) and compute the limit            
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From this point onwards the arguments runs on the usual lines and we infer the existence and 

continuity of the second derivatives of u.  We now have by greens theorem    
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where  r = distance of dr from P, the centre of the  sphere- 
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Since the value of the left hand side is zero, it follows that 2 u = 0.  This proves the 

sufficiency of the condition.  Since bygauss’s theorem the condition is evidently necessary 

we have herewith proved Blaschke’s theorem.  

3. Poisson’s equation 

Let  be a given function continuously differentiable in G. Let u be continuous in G 

and let it satisfy, further, for every sphere in G, the condition 
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Multifying by R2 and   integrating from O to R w.r.t. R.   this gives  
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Taking P1 to be the     point (x, y, z + h), we compute as before  
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continuous second derivatives.  We may now apply the  usual type of reasoning to I(P) and 

infer the existence of continuous second derivatives for I(P).  Thus we conclude that under 

the given condition u is twice continuously differentiable.  But if this is so we have  
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Hence the given condition is equivalent to 2u + 4 = 0 

We have thus the result: 

 If u is continuous in G and satisfies the condition (3.1) for every sphere in G, then    

2u + 4=o.  For  = 0, this reduces to Blaschke theorem, The condition (3.1) will be 

satisfied in particular if for every sphere in G. 

u(P)  = dr
Rr

dsqQu
R

s K












  

11
)(

4

1
2

             (3.2)  

 Thus if the continuous function u satisfies the condition (3.2) for every sphere in G, 

then u satisfies poisson’s equation at every point of G.  This is an extension to poisson’s 

equation of the converse theorem of Bocher and Koche and is well known7. 

 

4. Pockets equation 

 Next consider the equation 2u + cu = 0. Every regular solution of this equation 

satisfies the mean value property.  
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4.1  

a result due to weber, we may prove  a converse theorem in this case similar to that of 

Blaschke.   

Let f(x) be twice    continuous differentiable with 

f (O) finite,  O and f’ (O) = O.  Let the continuous function u satisfy the condition 
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 By reasoning exactly as before we conclude that U(P) is twice continuously 

differentiable 
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Obtained the following results  
 If u be continuous in G and if for every sphere in G   
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then 2u + cu = 0 with c = - 
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 provided that f(u) satisfies the conditions specified 

above. 

 In particular if f11(O)= 0, then u must be harmonic.  the condition (4.2) will be 

satisfied if for every sphere in G 
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Taking f(x) = 
xC

xCSin

.

.
 we obtain the converse of Weber’s mean value theorem.  

5. Generalisations to dimensions  

 These results may immediately be generalized  to n dimensions.  Thus taking the case 

of poisson’s equation, the corresponding result will here be as follows: let u be continuous in 

G and let it satisfy for every sphere QR, centre P and radius R, in G, the condition. 

oR 

lim
 0

11

2

1
)())(

11
2212


























    KR nnn

n

dr
Rrn

PudQuR
RWR

   

(5.1) 

Where KR is the volume inside  R,  is a continuously differentiable function, and Wn is the 

surface  area of the unit sphere is n dimensions.  Then  u is twice continuously differentiable 

and satisfies in G the equation.  

 2u + Wn=0 
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 In fact the proof of the differentiality of u proceeds exactly as before and then we 

have, by the corresponding form of greens theorem in n dimensions. 
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f(x) being such that f(0)  0, f (0) = 0, f11 (u) continuous  

Then u satisfies the equation  
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 The result will  be true in particular if we replace the condition (5.2) by 
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This result that under the condition (5.4) u satisfies the equation (5.3) has been proved 

as a particular case of a more general theorem and in a different way by H poritsky in a recent 

paper8. 

 

6. Analogues of saks’s theorems 

 Consider first the case of poisson’s equation.  then the analogues of Saki’s theorems 

to this case may be stated as follows: 

1) Let u be continuous, with its first partial derivatives, in G and let it satisfy for every sphere 

in G the condition.  
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 Where  is continuously differentiable. Then 2u+4=0  (Here d means the 

element of  area on the unit sphere) 

2) Let 2V=0, V0 in G.  If u be  continuous with its partial drivatives  in G and satisfies for 

every sphere in G, the condition.  
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lim
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then u satisfies 2u+ 4 = 0  

The method of proof is identical with that used by Saks, except that where as saks makes use 

of Blaschke’s theorem, we here use the analogue of Blaskchke’s theorem proved in 3 above.  

from which the first theorem is an immediate consequence.  following an ingenious 

procedure due to saks we may write  
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and apply  L, Hospital’s rule of the differential calculus to find 
oR 

lim
  (R) 

This procedure  gives   
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If therefore  the right – hand limit vanishes, so does 
oR 

lim
  (R) and  hence by the theorem 

of 3, u satisfies   

2u + 4 = 0.  This proves theorem (1).  The second theorem now follows from the 

first exactly as in Sak’s paper.  finally consider the analogue of Saks’s theorem with respect 

to the equation 2u + cu = 0 let  u be continuous, with its first partial derivatives is G.  and let 

f(x) satisfy the conditions specified is 4.   

If we now write,  (R) = 
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we find as above  
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Under the hypothesis regarding f(x) we have  

oR 
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we thus find that if  
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then  
oR 

lim
 (R) = 0  and hence by 4, u satisfies  2u -  

)0(

)0(3 11

f

f
 u = 0 

Writing C =
)0(

)(11

f

rf
 this result may be stated as follows:  

 If u be continuous with its first partial derivatives  G and satisfies for every sphere in 

G the condition.  
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4

1
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              (6.3) 

 then u satisfies at every point of G the equation 2u – 3cu = 0 
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