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Abstract: Many remote sensing applications have found success in using deep learning for 

data processing. Agriculture, geology, disaster assessment, urban planning, and other uses 

of remote-sensed imagery, are just some of the areas where this technology has found use. 

In this study, we examine the many forms of deep learning architectures and their 

applications in the analysis of remotely sensed data. 

 

1. INTRODUCTION 

 

Drones, or unmanned aerial vehicles (UAVs), are autonomous aircraft that can fly missions 

without a person on board [1]. UAVs, or unmanned aerial vehicles, come in a wide variety of 

forms and are used for a wide range of purposes [2]. Anti-aircraft target tactics, information 

collection, and observation of enemy areas were the first uses of the technology by the 

military [2,3,4,5]. UAV technology has also advanced beyond its original use. It has become 

more important in many areas of human endeavour in recent years. Drones are a thriving 

industry because of the many uses UAVs can be put to [6]. This is mostly due to the 

technology's user-friendliness. In livestock farming, for example, UAVs streamline a number 

of tasks, allowing for more effective animal management [7, 8, 9, 10]. Environmental, 

economic, technological, and strategic planning challenges have arisen for the cattle farming 

industry throughout time as a result of climate change, population increase, and fierce 

competition for land and other natural resources [11]. However, UAVs have lately seen broad 

use among livestock farmers due to the integration of cutting-edge technologies such as 

Artificial Intelligence (AI), the Internet of Things (IoT), Machine Learning (ML), state-of-

the-art sensors, etc. Figure 1 is an example of a common conceptual design framework for a 

UAV in a cattle farming management system (LFMS). The system's four phases of 

development include the water inspection system, the network design based on the Long-

Range Wide-Area Network (LoRaWAN), the drone equipped with sensors and cameras, and 

the optimization of the drone's flight route. Transceivers are placed around the necks of the 

livestock. In this way, data may be sent between the drone and the base.  
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Figure 1: UAV based farm animal monitoring 

 

The majority of research on UAVs for animal monitoring [8] has focused on wildlife species 

such deer [9,10,11], elk [9], hippo [12], rhino [13], and elephant [14]. The number of cattle 

studies has increased in recent years, although they are still uncommon overall. Animal 

counting and detection, cattle roundup, feeding behaviour, animal identification, and health 

monitoring have all been the focus of a small number of academic studies on this topic. The 

vast majority of these research (and notably the more recent ones) use deep learning for 

animal identification. 

 

All deep learning-based algorithms for detecting cattle in the literature fall into one of two 

categories. The first method employs convolutional neural networks (CNNs) to produce a 

probability heat map that presumably reveals the locations of animals [15]. The second 

method makes use of bounding box generation methods to define the region in which an item 

is located. Both of these research projects make advantage of the speed-optimized YOLO v2 

architecture [7]. While all of these research have revealed highly hopeful findings, it is 

difficult to assess the true relevance of their findings due to limitations in the experimental 

methods. Under particular, it seems that the aerial photographs were always acquired in 

perfect circumstances; nevertheless, elements such as aircraft height and ground sample 

distance (GSD) related, lighting, time of day, presence of shadows, etc. are not explored. It 

may be difficult to avoid potentially hazardous situations due to the lack of guidelines or 

norms to guide mission planning, and as a consequence, accuracy under real operating 

circumstances may be much lower. It's also important to note that in the first method, the 

CNN architectures used were developed for the particular situation at hand, and therefore 

comparisons with more well-established architectures are either few or non-existent. 

 

Most of the aforementioned experimental constraints are likely attributable to the fact that 

these are the first research specifically devoted to cattle detection, therefore the emphasis is 

on proof of concept rather than the finer points that would allow for practical operation. The 

primary aim of this effort is to increase knowledge on the topic since it is crucial for the 
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widespread use of this technology in the future. While accurate techniques of animal 

detection are crucial to any attempt at estimating animal populations, it is also necessary to 

account for a wide variety of other variables (animal movement, image matching, etc.). 
 

 

2. LITERATURE REVIEW 

 

Literature reviews in the field of remote sensing are offered in a wide variety of settings. As a 

refresher, Zhang et al. (2016) compiled a collection of resources explaining the use of DL 

techniques in image classification at the time. Cheng and Han (2016) followed up on this 

work, but instead of focusing on cutting-edge ANN and ML techniques, they honed down on 

more conventional approaches. Ball et al. (2017) provided a comprehensive and thorough 

evaluation of DL theories, techniques, and its problems in dealing with remote sensing data in 

a survey. With data from their own trials, Cheng et al. (2017) updated the field of picture 

categorization. Zhu et al. (2017), who also honed emphasis on classification, summed 

together much of the existing data necessary to comprehend the DL approaches taken to this 

problem. In addition, the overall performance of DNNs in publically accessible datasets for 

image classification job was investigated in a study conducted by Li et al. (2018), which 

provided insight into several DL applications. According to the study conducted by Yao et al. 

(2018), DL is set to replace traditional methods of image categorization in the remote sensing 

sector. 

 

While DL has shown some positive outcomes, much more research and testing is needed. The 

widespread interest in the many remote sensing applications that make use of hyperspectral 

imaging (HSI) data began about the same time. Perhaps the first survey of hyperspectral data 

was conducted in Petersson et al. (2017). A interdisciplinary overview of the widespread use 

of DL models to the processing of HSI datasets is provided in (Signoroni et al., 2019). 

Authors Signoroni et al. (2019) summarised the use of DL models to process highly detailed 

remotely sensed HSI data into classification tasks, object detection, semantic segmentation, 

and data enhancement, including denoising, spatial super-resolution, and fusion, as one of the 

most emerging areas of application. In a recent study, Ado et al. (2020) discuss the use of 

unmanned aerial vehicle (UAV)-based sensors to capture hyperspectral imagery for use in 

agriculture and forestry. They demonstrate the availability of a variety of DL methods for 

handling the complexity of HSI datasets. 

 

Jia et al. (2021) give a more current review of DL for hyperspectral image classification with 

limited labelled data. They remark on the discrepancy between DL models and HSI datasets 

since DL models often need sufficient labelled samples, while it is typically difficult to gather 

enough samples in HSI datasets owing to the complexity and time-consuming nature of hand 

labelling. However, by combining deep learning strategies with complementary approaches 

like transfer learning and a lightweight model, the problems associated with small-sample 

sets may be clearly recognised. Deep learning is also a novel technique for the area of 

infrared thermal imaging processing to address diverse domains, notably in satellite-provided 

data. To name a few examples, convolutional layers can be used to detect potholes in roads 

using terrestrial imagery (Aparna et al., 2019), land surface temperatures can be detected 

using a combination of multispectral and microwave observations from orbital platforms 

(Wang et al., 2020b), and sea surface temperature patterns can be determined to identify 

ocean temperature extremes (Xavier Prochaska et al., 2021). 
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3. METHODOLOGY 

 

Input Datasets: From those first photographs, two data sets were compiled. In the first, 

224224 pixel squares were assigned to every animal in every picture, and they were used to 

create a precise bounding box around each individual. Though more than half of an animal's 

body was visible, it was counted even if it was on the image's edge. Although the animal of 

interest was always in the centre of the frame, other animals may have been partially visible 

in some blocks of images due to their closeness. There were a total of 8629 animal-containing 

squares chosen, and an equal number of backdrop squares. The goal of creating this dataset 

was to find the optimal classification accuracy when all items of interest are properly framed 

by the picture blocks. In the second data set, pictures were chopped up into blocks of 224 by 

224 pixels on a regular grid. This number was used because blocks of this size contain almost 

all of the animals seen in the photos, and because 224 by 224 pixels is the usual input size for 

many of the CNNs evaluated here. To determine which blocks were cattle and which were 

not, we looked at how many pixels inside each block could be definitively connected with an 

animal without using any other block (or the complete picture) as reference. The volume and 

variety of pictures made this the most practical method, despite the criterion's subjectivity 

and potential for inter- and intra-rater disagreements [14]. The number of "non-cattle" blocks 

was significantly larger, but only 14,489 randomly chosen "non-cattle" blocks were utilised 

in the trials to prevent difficulties connected with class imbalance. One individual personally 

annotated both picture collections. 

 

Recurrent Neural Network 

A RNN is able to detect temporal patterns in time-series inputs. To combat the poor memory 

retention typical of RNNs, researchers have developed techniques like long short-term 

memory (LSTM) and gated recurrent unit (GRU). Both LSTM and GRU can handle lengthy 

sequences of data as input. There have been several applications of RNN and its variations in 

the processing of temporal data in the area of remote sensing, including picture classification 

and correction using satellite imagery. Figure 2 is an example of change detection conducted 

on a multi-temporal picture. RNN is able to learn from temporal data because it retains the 

sequence of inputs and the connection between them. Effective change detection is made 

easier by learning the interdependencies between the time-series inputs. RNN networks, 

because of their memory's portability, can quickly learn the transformation rules of time-

series pictures. It is not only the bi-temporal shifts in land cover that RNN is able to learn, but 

also the multi-temporal shifts. 

 

RNN is a powerful tool for identifying the impacts of natural catastrophes on crops and other 

areas and for analysing the data collected from such areas. While most remote sensing 

applications have used a single deep neural network, several recent efforts have focused on 

integrating multiple networks to handle input from many sensors. The second part of this 

article discusses these remote sensing hybrid architectures. 
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Figure 2: Change detection on multi-temporal images using RNN. 

 

Generative Adversarial Network 

To produce new instances that are similar to the input data, GAN is a generative model that 

automatically detects and learns patterns in the input data. Two convolutional neural 

networks (CNNs), a "generator" and "discriminator," are used to create a GAN. One of the 

primary applications of GAN in remote sensing is picture synthesis for data enhancement. 

The generation of high-resolution pictures is another use of GAN. Semi-supervised aircraft 

recognition from unlabeled airport pictures is achieved using GAN in [14]. Figure 3 

demonstrates how GAN has been successfully used to pan-sharpening [2]. This technique, 

known as "pan-sharpening," combines high-resolution panchromatic and lower-resolution 

multispectral pictures into a single, high-resolution colour image. In [11], the writers 

attempted to use GAN image creation to fix the pan-sharpening issue. It has been taught to 

use an adaptive loss algorithm to provide crisp pan pictures. 

 

 
Figure 3: GAN for pan-sharpening with multispectral and panchromatic images. 

 

Restricted Boltzmann Machine and Deep Belief Network 

When given an input set, a restricted Boltzmann machine (RBM) may learn the probability 

distribution over that set. A bipartite graph is formed by the two sets of connections between 

the nodes, which may be either concealed or shown to the user. When RBMs are stacked, a 

deep belief network (DBN) is created. RBM is used for both classification and feature 

learning in remote sensing pictures. See Figure 4 for an example of RBM being used to 
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classify hyper-spectral images. Nodes in the same layer in traditional RBM are linked to their 

counterparts in the other layer, while nodes in other layers are not interconnected. Instead of 

using binary visible layers, the authors of [5] use Gaussian ones, which allows for more 

accurate land cover categorization. Features are retrieved in an unsupervised manner using 

the Gaussian RBM, and then the features describing the land cover are supplied to a logistic 

regression unit. 

 
Figure 4: Gaussian-Bernoulli RBM for hyperspectral image classification. 

 

Autoencoder 

Known as an unsupervised deep learning model, autoencoder (AE) is capable of non-linear 

transformation. The unlabeled data is used by the non-linear function to discover the hidden 

surface[17]. The two networks in AE are the "encoder" and "decoder," with the former 

reducing the input's dimensionality and the latter reconstructing it. Dimensionality reduction 

[10] and feature variation [11] are two common uses of AE in remote sensing. Classification 

on unlabeled data is also a strength for AE [12]. Particularly, it is used for mapping snow 

cover [13]. Figure 5 depicts a stacked denoising autoencoder (SDAE) image classifier [14]. 

The idea of SDAE is to introduce noise into each encoder's input layer, therefore pushing the 

system to learn all of its crucial characteristics. It produces a noise-resistant network that is 

steady. The learning procedure in SDAE is bi-level. At the outset, the SDAE receives the 

unlabeled inputs. For unsupervised training, the features[18] are discovered by a greedy 

layer-by-layer strategy. The next step involves training a back propagation layer under 

supervision using labels. 

 
Figure 5: Remote sensing image classifier using stacked denoising autoencoder. 
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Convolutional Neural Network 

When it comes to picture classification and segmentation, the CNN has proven to be the most 

effective deep learning network to yet. As a result of its remarkable success in various 

computer vision tasks, the CNN has become a formidable resource. The proliferation of 

remote sensing satellites equipped with a wide range of sensors presents a potentially rich 

environment for CNN-based methods. The convolutional neural network (CNN) has been 

successfully used in remote sensing for object recognition and picture segmentation. CNN 

has been used successfully for detecting buildings [2, 3] and aeroplanes [1, 4]. For the most 

part, categorization is handled by the last completely linked layer in the network. Thus, 

categorization of land use and land cover using CNN has been more popular [4-7]. In Figure 

6, we can see one example of a multi-scale classification performed using ResNet [8]. 

Objects on the ground, such as cities, farms, rivers, and woods, all have their own unique 

properties and resolutions, making it impossible to fully utilise these aspects using a single 

scale of observation. The ResNet-50 was chosen because it required less processing power to 

run than competing pre-trained models. ResNet-50 has an input size of 224 x 224 x 3 and 16 

residual blocks with 3 convolutional layers. For accurate final projection of the land cover, 

we merge the boundary segmentation with the multi-scale patches and classify them with 

land cover category labels using a pre-trained ResNet-50. One of CNN's most useful 

functions is pan-sharpening [9]. 

 

 
Figure 6: Land cover classification using CNN. 

 

4. RESULTS 

 

Using deep architectures on their own in remote sensing had shown mediocre success so far. 

Each deep learning architecture has advantages in certain use cases, therefore recent 

advancements in mixing them have produced greater outcomes. Change detection and 

categorization are two areas where hybrid architectures may shine. Additionally, picture 

fusion may be accomplished by using hybrid deep neural networks. Classification and change 

detection applications in remote sensing deal with enormous data sets, which significantly 

increases processing time. Different deep learning models are investigated, with the goal of 

effectively using their capabilities to solve this problem. The hybrid strategy leverages 
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parallel processing across different networks to boost velocity and precision. Multiple hybrid 

deep architectures that can handle multi-sensor data are shown in Table 1. 

 

Application of CNN-GAN to the problem of change detection has been reported [8]. For 

change detection, a generative learning approach may be used to learn the connection 

between the multi-temporal pictures and their respective change maps. Here is how the 

teaching and learning procedure works. Initial feature extraction using the CNN is used to 

clean up the multispectral pictures by getting rid of redundant data and noise. This mapping 

function is then learned using a GAN. 

 

This hybrid design is also useful for clearing the sky of clouds. When there is cloud cover, 

important details in the picture are obscured. It's important to rebuild the missing data. To 

clear the skies in an optical picture, [9] suggests employing the matching SAR image in a 

two-step process including a convolutional neural network (CNN) and a generative 

adversarial network (GAN). First, the SAR picture is "transformed" into a simulated optical 

image that lacks fine detail and contains fewer colours. Second, a GAN is used to combine 

the simulated optical image with the SAR and hazy optical picture to generate a clear optical 

image. 

 

When used to time-series image analysis, the RNN has demonstrated promising results. The 

LSTM network, a kind of RNN, excels at spotting shifts in data. Combining it with a 

common neural network has led to even greater gains. Here is how the CNN-LSTM network 

is trained to detect changes in the environment. In order to classify the input picture, the 

LSTM network uses the spatial and spectral properties extracted by the CNN. According to 

the chart, the total accuracy rate of 98.75% from the city expansion research performed using 

the CNN-LSTM hybrid network [10] is rather satisfying. 

 

To create a unified picture from panchromatic and multispectral data, pan-sharpening has 

been accomplished by combining CNN and stacked autoencoder (SAE). According to [3], a 

hybrid architecture is developed that handles spatial and spectral information independently. 

SAE uses many layers to extract spectral characteristics from a multispectral picture. This is 

because CNN is able to extract the significant amounts of spatial information contained in 

panchromatic pictures. A fully linked layer is then fed the fused spatial and spectral data in 

order to classify water and urban regions. The hybrid design achieves a classification 

accuracy of 94.82% when applied to pan-sharpened images, which is much better than the 

accuracy achieved by any of the separate structures. 
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Table 1: Hybrid deep architectures for UAV. 

 

SAM - Spectral Angle Mapper; ERGAS - Relative Dimensionless Global Error in Synthesis; 

mIoU - mean Intersection over Union. 

To better identify oil spills in the water, a hybrid architecture was created by combining 

convolutional neural networks (CNNs) with recurrent neural networks (RNNs) [13]. The 

characteristics needed for oil spill segmentation can be extracted using a single deep CNN, 

however the model isn't very good at picking out the finer details. The hybrid architecture 

effectively catches the finer features of the oil spill in SAR pictures by adding conditional 

random fields in RNN. Mean intersection over union (mIoU), an assessment index for 

segmentation, is calculated to be 82.1 percent. It's a huge improvement over simple CNN 

setups. Additionally, the CNN-RNN network only requires 0.8 s to execute, which is much 

faster than the completely convolutional network architecture's 1.4 s. 

Based on what has been said above, it is clear that a hybrid design provides much higher 

performance than a single architecture. 
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5. CONCLUSION 

 

With the difficulties of remote sensing, such as the scarcity of ground truths and the difficulty 

of preprocessing, deep learning has become more important in recent years. This chapter 

provides a summary of the methods used to analyses remotely sensed images using deep 

learning. It has been suggested how remote sensing may benefit from the use of deep 

architectures like CNNs, RNNs, AEs, and GANs. Integration of data from many sensors 

using a hybrid of two separate architectures has also been proposed. Fusion's value in areas 

like as animal farm monitoring has been emphasized. 
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