Efficient Approach for Detecting Cardiovascular Disease Using Machine Learning

Document Type : Primary Research paper


1 B.Tech ( Scholar), School of Computer Science & Engineering , Sandip University , Nashik , India

2 Assistant Professor , School of Computer Science & Engineering , Sandip University , Nashik , India

3 Professor, School of Computer Science & Engineering, Sandip University , Nashik , India


Machine learning involves artificial intelligence, and it is used in solving many problems in data science. One common application of machine learning is the prediction of an outcome based on existing data. The machine learns patterns from the existing dataset and then applies them to an unknown dataset in order to predict the outcome. Classification is a powerful machine-learning technique that is commonly used for prediction. Some classification algorithms predict with satisfactory accuracy, whereas others exhibit limited accuracy. This project investigates a method termed ensemble classification, which is used for improving the accuracy of weak algorithms by combining multiple classifiers. Experiments with this tool were performed using a heart disease dataset. A comparative analytical approach was done to determine how the ensemble technique can be applied for improving prediction accuracy in heart disease. The focus of this project is not only on increasing the accuracy of weak classification algorithms but also on the implementation of the algorithm with a medical dataset, to show its utility to predict disease at an early stage. The results of the project indicate that with ensemble techniques such as stacking and by using feature selection we can improve the prediction accuracy of weak classifiers and exhibit satisfactory performance in identifying risk of heart disease.